Каноническое уравнение: а) эллипса при его параметрах ε= 3/5, A(0;8). Уравнение эллипса Координаты точки А лежат на оси Оу - это параметр в = 8. Эксцентриситет эллипсa e характеризует его растяженность и определяется отношением фокального расстояния c к большой полуоси a. Для эллипсa эксцентриситет всегда будет 0 < e < 1. е = с/а, отсюда с = е*а. Но с² = а² + в². Заменим а² + в² = е²а², откуда получаем а = в/(√1-е²). Находим значение а = 8/(√1-(3/5)²) = 8/(√16/25) = 8*5/4 = 10. ответ: уравнение эллипса
б) гиперболы с двумя точками A( √6; 0), B(-2√2; 1). Точка А даёт координаты вершины правой ветви. Подставим координаты точки В в уравнение гиперболы 8/6 - 1/b² = 1. 8b² - 6 - 6b² = 0. 2b² = 6. b = +-√3. Теперь составим уравнение гиперболы:
в) параболы с уравнением директрисы Д: у = 9. Положительный знак этого параметра говорит, что парабола имеет ветви вниз. Её уравнение х² = -2ру. Уравнение директрисы у = р/2, отсюда р = 2у = 2*9 = 18. Тогда уравнение параболы х² = -2*18*у.
Каноническое уравнение: а) эллипса при его параметрах ε= 3/5, A(0;8). Уравнение эллипса Координаты точки А лежат на оси Оу - это параметр в = 8. Эксцентриситет эллипсa e характеризует его растяженность и определяется отношением фокального расстояния c к большой полуоси a. Для эллипсa эксцентриситет всегда будет 0 < e < 1. е = с/а, отсюда с = е*а. Но с² = а² + в². Заменим а² + в² = е²а², откуда получаем а = в/(√1-е²). Находим значение а = 8/(√1-(3/5)²) = 8/(√16/25) = 8*5/4 = 10. ответ: уравнение эллипса
б) гиперболы с двумя точками A( √6; 0), B(-2√2; 1). Точка А даёт координаты вершины правой ветви. Подставим координаты точки В в уравнение гиперболы 8/6 - 1/b² = 1. 8b² - 6 - 6b² = 0. 2b² = 6. b = +-√3. Теперь составим уравнение гиперболы:
в) параболы с уравнением директрисы Д: у = 9. Положительный знак этого параметра говорит, что парабола имеет ветви вниз. Её уравнение х² = -2ру. Уравнение директрисы у = р/2, отсюда р = 2у = 2*9 = 18. Тогда уравнение параболы х² = -2*18*у.
Площадь - интеграл разности функций.
ДАНО
Y₁ = 0
Y₂ = x² - 6*x + 5
РЕШЕНИЕ
Находим пределы интегрирования - общие точки.
Решаем уравнение
Y₂ = x² - 6*x + 5 = Y₁ = 0
Корни уравнения: a = 5, b = 1
Находим интеграл разности
Вычисляем при а = 5
S(5) = -25 + 75 - 41 2/3 = 8 1/3
S(1) = - 5 +3 - 1/3 = - 2 1/3
Вычисляем разность и находим ответ.
S = 8 1/3 - (-2 1/3) = 10 2/3 ≈ 10.667 - ОТВЕТ