ответ:1. нельзя ехать равномерно с ускорением. 2. Предположим, что первый движется равнозамедленно с ускорением 20 см/с^2 = 0,2м/с^2. 3. В начальный момент времени скорость первого 18 км/час = 5 м/с, а скорость второго 5,4 км/час = 1,5 м/с. 4. Скорость первого велосипедиста относительно второго 5 м/с + 1,5 м/с = 6,5 м/с. 5. Ускорения велосипедистов одинаковы по модулю и направлению (направлены вдоль горы вниз у одного и другого). В системе отсчета, связанной со вторым велосипедистом, ускорение первого равно 0, т.е. относительная скорость велосипедистов не меняется с течением времени. 6. Велосипедисты встретятся через время t = 130м/6,5м/с = 20с. 7. За это время первый пройдет путь S = Vt - at^2/2. S = 5*20 - 0.2*20^2/2 = 100 - 40 = 60м 8. Путь второго равен 130м - 60м = 70м (Можно посчитать по - другому: S = Vt + at^2/2; S = 1,5*20 + 0,2*20^2/2 = 30 + 40 = 70м)
Пошаговое объяснение:
Скрорость теплохода примем за x(км/час), а скорость течения - за y(км/час). Тогда скорость теплохода по течению будет (x+y)(км/час), а скорость теплохода против течения (x-y)(км/час). Расстояние равняется произведению скорости на время, следовательно, можем составить систему уравнений:
В первом уравнении раскрываем скобки, второе же уравнение умножаем на 2:
Из второго уравнения выражаем y и подставляем в первое:
Далее, решаем первое уравнение относительно x:
Таким образом, собственная скорость теплохода равняется 55 км/час, а скорость течения - 5 км/час. Можно сделать проверку, подставив найденные скорости в изначальные уравнения.
= 97/30 * 15/2 = 97/2 * 1/2 = 97/4 = 24 1/4 = 24,25