М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
spongebob2353
spongebob2353
11.12.2021 00:03 •  Математика

Скорость течения реки равна 2 целых 5/7 км/ч,скорость лодки в стоячей воде - 15 целых 3/7 км/ч. найдите скорость лодки по течению реки.

👇
Ответ:
QueenKulumshina
QueenKulumshina
11.12.2021
Скорость по течению=скорость реки+скорость лодки.
2 \frac{5}{7} + 15 \frac{3}{7} = 18 \frac{1}{7}
4,6(98 оценок)
Ответ:
оки8
оки8
11.12.2021
Течение реки -
2 \frac{5}{7}
км/ч.

Скорость лодки по стоячей воде -
15 \frac{3}{7}
км/ч.

Скорость лодки по течению -
2 \frac{5}{7} + 15 \frac{3}{7} = 18 \frac{1}{7}
км/ч.
4,6(64 оценок)
Открыть все ответы
Ответ:
babka5
babka5
11.12.2021

ФЗФТШМФТИ - 3 Ф, 2 Т, 1 З, 1 Ш, 1 М, 1 И. 9 букв

Сначала расставим 3. Это можно сделать C_9^3 Для остальных букв остается 6 мест. Теперь на них расставим 2 Т. Это можно сделать C_6^2 Для остальных букв остается 4 места. И т.д. Тогда общее количество различных перестановок равно C_9^3*C_6^2*C_4^1*C_3^1*C_2^1*C_1^1=\dfrac{9*8*7}{2*3}*\dfrac{6*5}{2}*4*3*2=9*8*7*6*5*2=30240

a) В любой перестановке будет не более одного подслова «ТШ».

Подсчитаем все перестановки, его содержащие. Ш может стоять на любом месте со2 по 9ое => вариантов расстановки 8. Автоматически на предшествующее место ставим одну Т. Осталось расставить 3 Ф, 1 Т, 1 З, 1 М, 1 И. По аналогии с общим случаем, получаем общее число перестановок 8*C_7^3*C_4^1*C_3^1*C_2^1*C_1^1=8*\dfrac{7*6*5}{2*3}*4*3*2=8*7*6*5*4=6720

Тогда ответ на этот пункт - 30240-6720=23520

b) В любой перестановке будет не более одного подслова «ФЗ».

Подсчитаем все перестановки, его содержащие. З может стоять на любом месте со2 по 9ое => вариантов расстановки 8. Автоматически на предшествующее место ставим одну Ф. Осталось расставить 2 Ф, 2 Т, 1 Ш, 1 М, 1 И. По аналогии получаем общее число перестановок  8*C_7^2*C_5^2*C_3^1*C_2^1*C_1^1=8*\dfrac{7*6}{2}*\dfrac{5*4}{2}*3*2=8*7*6*5*3*2=10080

Тогда ответ на этот пункт - 30240-10080=20160

c)  В любой перестановке будет не более двух подслов «ФТ».

В данном случае при аналогичном подходе мы будем учитывать слова с двумя «ФТ» 2 раза: один раз для "правого" подслова, и один для левого. Потому нужно будет отдельно найти число слов, содержащих 2 подслова.

Подсчитаем все перестановки. T может стоять на любом месте со2 по 9ое => вариантов расстановки 8. Автоматически на предшествующее место ставим одну Ф. Осталось расставить 2 Ф, 1 Т, 1 З, 1 Ш, 1 М, 1 И. По аналогии получаем общее число перестановок  8*C_7^2*C_5^1*C_4^1*C_3^1*C_2^1*C_1^1=8*\dfrac{7*6}{2}*5*4*3*2=20160

Теперь для 2 подслов:

Сначала выставим "левое" подслово. Если справа осталось k>1 мест, то расставить на них подслово можно, очевидно Тогда общее число расстановки двух подслов равно

6+5+4+3+2+1=21 . Осталось расставить 1 Ф, 1 З, 1 Ш, 1 М, 1 И Тогда  общее число перестановок 21*5*4*3*2*1=2520

Тогда ответ 30240-20160+2520=12600

4,6(75 оценок)
Ответ:
kirapri32
kirapri32
11.12.2021
В заданном неравенстве (b+2)x^2-(b+1) x +2>0 левая часть - квадратный трёхчлен. Его общий вид: ах²+вх+с.

Пусть f(x) = ax² + bx + c, a ≠ 0.
Для того, чтобы корни данного квадратного трёхчлена были больше некоторого числа t, необходимо и достаточно, чтобы выполнялась следующая система условий:  D ≥ 0, a · f(t) > 0, x₀ > t (это абсцисса вершины параболы, t = 0 по заданию).

Находим дискриминант: D=b²-4ac.
D=b²+2b+1-4(b+2)*2 = b²-6b-15.
Приравниваем его нулю: b²-6b-15 = 0.
Квадратное уравнение, решаем относительно b: 
Ищем дискриминант:D=(-6)^2-4*1*(-15)=36-4*(-15)=36-(-4*15)=36-(-60)=36+60=96;
Дискриминант больше 0, уравнение имеет 2 корня:b₁=(√96-(-6))/(2*1)=(√96+6)/2=√96/2+6/2=√96/2+3 = 2√6+3 ≈ 7.89898;

b₂=(-√96-(-6))/(2*1)=(-96+6)/2= -96/2+6/2=- √96/2+3 = -2√6+3 ≈ -1.89898.

Находим a · f(t):
f(0) = (b+2)*0²-(b+1)*0+2 = 2.
a · f(t) = (b+2)*2 = 2b+4.
Находим условие a · f(t) > 0: 
2b+4 > 0,
2b > -4,
b > -2.

Проверяем третье условие: x₀ > t.
x₀ = -b/2а = (b+1)/(2b+4) > 0.
b > -1.
Совместное выполнение всех условий даёт ответ:
чтобы неравенство (b+2)x^2-(b+1) x +2>0 выполнялось при любых действительных значениях x, параметр b должен находиться на отрезке:
3-2√6 < b < 3+2√6.
4,7(6 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ