Линейные уравнения ах = b, где а ≠ 0; x=b/a.
Пример 1. Решите уравнение – х + 5,18 = 11,58.
– х + 5,18 = 11,58;
– х = – 5,18 + 11,58;
– х = 6,4;
х = – 6,4.
ответ: – 6,4.
Пример 2. Решите уравнение 3 – 5(х + 1) = 6 – 4х.
3 – 5(х + 1) = 6 – 4х;
3 – 5х – 5 = 6 – 4х;
– 5х + 4х = 5 – 3+6;
– х = 8;
х = – 8.
ответ: – 8.
Пример 3. Решите уравнение .
. Домножим обе части равенства на 6. Получим уравнение, равносильное исходному.
2х + 3(х – 1) = 12; 2х + 3х – 3 =12; 5х = 12 + 3; 5х = 15; х = 3.
ответ: 3.
Пример 4. Решите систему
Из уравнения 3х – у = 2 найдём у = 3х – 2 и подставим в уравнение 2х + 3у = 5.
Получим: 2х + 9х – 6 = 5; 11х = 11; х = 1.
Следовательно, у = 3∙1 – 2; у = 1.
ответ: (1; 1).
Замечание. Если неизвестные системы х и у, то ответ можно записать в виде ко
Пошаговое объяснение:
надеюсь правильно
ну типо так?!
Пошаговое объяснение:
||2x – 4| – 5| = 9|+7| = 7
|-7| = 7,
поэтому, если |x| = 7, то делаем вывод, что x = +-7
A) |2x-5|-1 = 7 или |2x-5|-1 = -7
|2x-5| = 8 или |2x-5| = -6 ---это невозможно по определению модуля
2x-5 = 8 или 2x-5 = -8
2x = 13 или 2x = -3
x = 6.5 или x = -1.5
Б) |2x-1|-5 = 7 или |2x-1|-5 = -7
|2x-1| = 12 или |2x-1| = -2 ---это невозможно по определению модуля
2x-1 = 12 или 2x-1 = -12
2x = 13 или 2x = -11
x = 6.5 или x = -5.5
3x+2 = 5x+6 или 3x+2 = -(5x+6)
2x = -4 или 8x = -8
x = -2 или x = -1