Проведем радиусы ОА, ОВ, ОС. По условию, угол АСВ = 120 1) Треугольники АОС и ВОС равны по третьему признаку: у них ОС - общая сторона, ОА = ОВ как радиусы одной окружности, АС = ВС по условию. Кроме того, эти треугольники еще и равнобедренные
2) Т.к. треугольники АОС и ВОС равны, то углы АСО и ВСО равны. АСО = ВСО = АСВ : 2 = 120 : 2 = 60
3) Т.к. в равнобедренном треугольнике углы при основании равны, то ОАС = ОСА = 60 в треугольнике АСО и (аналогично) ОВС = ОСВ = 60 в треугольнике ВСО. Поскольку сумма углов ОАС + АСО + АОС треугольника АСО равна 180, то угол АОС тоже равен 60 и треугольник АСО равносторонний, а значит, АО = АС = 4, т.е. радиус окружности равен 4. Но т.к. диаметр равен двум радиусам, то диаметр будет 2 · 4 = 8
Проведем радиусы ОА, ОВ, ОС. По условию, угол АСВ = 120 1) Треугольники АОС и ВОС равны по третьему признаку: у них ОС - общая сторона, ОА = ОВ как радиусы одной окружности, АС = ВС по условию. Кроме того, эти треугольники еще и равнобедренные
2) Т.к. треугольники АОС и ВОС равны, то углы АСО и ВСО равны. АСО = ВСО = АСВ : 2 = 120 : 2 = 60
3) Т.к. в равнобедренном треугольнике углы при основании равны, то ОАС = ОСА = 60 в треугольнике АСО и (аналогично) ОВС = ОСВ = 60 в треугольнике ВСО. Поскольку сумма углов ОАС + АСО + АОС треугольника АСО равна 180, то угол АОС тоже равен 60 и треугольник АСО равносторонний, а значит, АО = АС = 4, т.е. радиус окружности равен 4. Но т.к. диаметр равен двум радиусам, то диаметр будет 2 · 4 = 8
Шаги:
1) Перенеси свободные слагаемые ( без икса ) из левой части на правую ( 2/5х = 3х/4 – 5 )
2) Перенеси слагаемые с неизвестным икс из правой части на левую ( -7/20 = -5 )
3) Раздели обе части на ур-ния на -7/20 ( х = -5 / ( -7/20 ) )
В итоге: х = 100/7
Извини, если не так.