Пошаговое объяснение:
Расстояние между городами 730 км.
Направление движения: на встречу друг другу.
Выехали из двух городов одновременно.
Скорость грузового автомобиля на 16 км/ч больше автобуса.
Время движения 5 ч.
Определить скорость грузового автомобиля и автобуса.
Расстояние, на которое сближаются грузовой автомобиль, и автобус за единицу времени, называют скоростью сближения vсб.
В случае движения грузового автомобиля и автобуса навстречу друг другу, скоростью сближения равно: vсб = v1 + v2
Если начальная расстояние между городами равна S километров и грузовая машина и автобус встретились через tвстр ч, то S = vсбл * tвстр = (v1 + v2) * tвстр, км.
Пусть скорость автобуса равна х км/ч, тогда скорость грузового автомобиля будет (х + 16) км/ч.
Согласно условию задачи, нам известно, что расстояние между городами S = 730 км и tвстр = 5 ч, подставим значения в формулу:
(х + (х + 16)) * 5 = 730
(2х + 16) * 5 = 730
10х + 80 = 730
10х = 730 – 80
10х = 650
х = 650 : 10
х = 65
Скорость автобуса равно 65 км/ч.
Скорость грузового автомобиля равно 65 + 16 = 81 км/ч.
ответ: скорость автобуса — 65 км/ч; скорость грузовой машины — 81 км/ч.
(666+6,(6))*(6+6+6):6+6*(6-6)=2018
Поясняю. Запись 6,(6) означает 6 целых и 6 в периоде, это равно 6 целых 2/3.
(666+6 2/3)*18:6+6*0=(666+6 2/3)*3+0=1998+20=2018.
Собственно, у меня получилось выразить 2018 девятью 6, поэтому в конце пришлось прибавить 0, выраженный тремя 6.