☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆
Вычисление производных основано на применении следующих правил, которые мы будем использовать без доказательств, поскольку доказательства выходят за рамки школьного курса математики.
♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡
Производная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆♡☆
В треугольнике АВС ВД биссектриса и ВД = 12, АВ = 14 , ВС = 35.
1.Проведем через точку Д прямую параллельную АВ и точка Р ВС. Получаем, что треугольник ВРД равнобедренный ( ВДР = ) и ВР = ДР.
2. АВС подобен ДРС ( по двум углам) АВ / РД = 7/5 14/РД = 7/ 5 и РД=10 и
ВР = 10.
3. В ВДР найдем cos BDP по теореме косинусов, cos BDP = 0,6 ,
значит sin BDP = sin ABD = 0, 8.
4. Т. К. ВД биссектриса ,то по свойству биссектрисы: АД / ДС = 14/ 35 = 2/5 и SABD / SBDC =2/5 SABD = 2/7 SABC .
SABD = ½ AB BD sin ABD = 67,5, значит SABC = 7/2 SABD = =235.2. ответ : 235,2.
f(x)=√х +4 +4/√х и найдём производную
fштрих(x)=1/(2√х) -числитель2знаменательх√х.
Везде корни квадратные!!