1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
Пошаговое объяснение:
1. Имеется три партии ламп по 100, 200 и 300 штук. В первой партии 80% ламп с
продолжительностью работы более 1 000 часов, во второй - 75%, в третьей – 60%.
Какова вероятность, что случайно выбранная лампа, проработавшая более 1000 часов, была взята из второй партии?
2. Получить ряд распределения для случайной величины – числа попаданий в цель при двух выстрелах, если вероятность попадания в цель равна 0.8 при одном выстреле. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение этой случайной величины. Построить график функции распределения и показать на нем математическое ожидание и среднее квадратическое отклонение.
3,75+0.25=4
4+0.237=4.237
2,47+3,57+4,43=10.47
3,57+4,43=8
8+2.47=10.47
(18,23+7,983)-7,23=18,23+7,983-7,23=18.983
18.23-7.23=11
11+7.983=18.983
13,23-(4,87+5,23)=13.23-4.87-5.23=3.13
13.23-5.23=8
8-4.87=3.13