М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alinka505505
Alinka505505
30.11.2020 18:02 •  Математика

Сколько еденичных отрезков на числовой оси между обееми точками с данными координатами. 5и13, 0,4и5,2,0и5,6. -4и0.-10и-2. -4и+4,-1и+15.-2и-1000. -600и+400

👇
Ответ:
aidafarhadova
aidafarhadova
30.11.2020
5 и 13 - 8
0.4 и 5.2-4
0 и 5,6 - 5
-4 и 0 - 4
-10 и-2 -8
-4и+4 - 8
-1 и +15 - 16
-2 и -1000 -998
-600 и +400 - 1000
4,6(49 оценок)
Открыть все ответы
Ответ:
lolka143
lolka143
30.11.2020
Проведем высоту трапеции Н через точку К. Она точкой К делится пополам, так как эта точка лежит на средней линии трапеции. Таким образом, высоты обоих указанных треугольников равны Н/2.

Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.

S(BKC) = 1/2*BC*H/2
S(AKD) = 1/2*AD*H/2

Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:

S(ABCD) = 1/2*(BC + AD)*H

Раскроем скобки:

S(ABCD) = 1/2*BC*H + 1/2*AD*H = 2*S(BKC) + 2*S(AKD) = 2*(S(BKC) + S(AKD)).

Таким образом: 
S(BKC) + S(AKD) = S(ABCD):2.

Что и требовалось доказать.
4,4(18 оценок)
Ответ:
petrius100p0bmz5
petrius100p0bmz5
30.11.2020
Проведем высоту трапеции Н через точку К. Она точкой К делится пополам, так как эта точка лежит на средней линии трапеции. Таким образом, высоты обоих указанных треугольников равны Н/2.

Площадь треугольника равна половине произведения основания на высоту. Запишем это для каждого треугольника.

S(BKC) = 1/2*BC*H/2
S(AKD) = 1/2*AD*H/2

Площадь же трапеции равна полусумме оснований, умноженной на высоту. Запишем и это:

S(ABCD) = 1/2*(BC + AD)*H

Раскроем скобки:

S(ABCD) = 1/2*BC*H + 1/2*AD*H = 2*S(BKC) + 2*S(AKD) = 2*(S(BKC) + S(AKD)).

Таким образом: 
S(BKC) + S(AKD) = S(ABCD):2.

Что и требовалось доказать.
4,4(10 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ