Из условия следует, что треугольник прямоугольный, далее, рассмотрим треугольник ACD. Все углы у него известны, а именно
^CAD = 15 (по условию)
^ACD = 45 (СD - биссектриса прямого угла)
^ADC = 120 (180-15-45)
и одна сторона тоже
АС = sqrt(3).
Следовательно, треугольник полностью определён и не представляет сложностей найти все другие его элементы.
Длину стороны AD проще всего найти из теоремы синусов
AD/sin(^ACD)=AC/sin(^ADC), откуда
AD =AC*sin(^ACD)/sin(^ADC), подставим исходные данные
AD = sqrt(3)*sin(45)/sin(180-60)=(sqrt(3)*sqrt(2)/2)/(sqrt(3)/2)=sqrt(2)
Вот и всё. Вроде так.
Подробнее - на -
Пошаговое объяснение:
-0,5n-0,2n=14;
-0,7n=14;
n=14:(-0,7);
n=-20.
...
0,8a+16=4-1,6a;
0,8a+1,6a=4-16;
2,4a=-8;
a=-8:2,4;
a=-3(одна третья)