Пусть x партий выиграно, y партий - ничья, z партий проиграно.
По условию задачи нужно найти разность между количествами побед и поражений, т.е. величину (x-z).
Составим систему уравнений:
x + 0,5y + 0*z = 25 (всего очков);
x + y + z = 40 (всего партий);
Умножим первое уравнение системы на 2:
2x + y = 50;
x + y + z = 40;
Вычтем из первого уравнения второе:
2x + y - x - y - z = 50 - 40;
x-z = 10;
разность между количествами побед и поражений x - z = 10.
ответ: количество побед на 10 больше, чем поражений.
28 = 2*2*7
3516 = 2*2*3*293
5621 = 7*11*73
10018 = 2*50019
162264 = 2*2*2*3*6761
300360= 2*2*2*3*5*2503
102072 = - простое
9658 = 2*11*439
435 = 3*5*29