Прежде всего отметим, что число матчей, сыгранных с другими командами увеличивается от 0 до 19 и точно не больше 19.
Если предположить, что есть момент, когда все команды сыграли разное число матчей, то это возможно при единственном раскладе
1) есть только одна команда, которая не играла (0) 2) есть только одна команда, которая сыграла ровно одну игру (1) 3) есть только одна команда, которая сыграла ровно две игры (2) . . . 20) есть только одна команда, которая сыграла ровно 19 игр (19)
Только так реализуются 20 различных чисел от 0 до 19. Получаем противоречие - последняя команда сыграла со всеми, но первая почему-то не играла ни с кем.
Значит предположение неверно, и поэтому в любой момент состязаний имеются две команды, сыгравшие к этому моменту одинаковое количество матчей
1) -3 - (3-x) = -3 раскроем скобки , т.к. перед скобкой знак "-" , изменим знаки выражения в скобках на противоположные: -3 - 3 + х = -3 - 6 + х =-3 переносим число в другую часть уравнения , изменяем знак на противоположный х = -3 + 6 х = 3
2) 10 : 3х = 15 начальная школа : чтобы найти неизвестный делитель (3х) нужно делимое (10) разделить на частное (15) ; 3х = 10/15 (дробь) 3 * х = 2/3 нач. шк. : чтобы найти неизвестный множитель (х) нужно произведение ( 2/3) разделить на известный множитель (3) ; х= 2/3 : 3 = 2/3 : 3/1 = 2/3 * 1/3 = (2*1)/(3*3) х= 2/9
Заранее