Всборнике билетов по биологии всего 44 билетов, в 22 из них встречается вопрос по ботанике. найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.
F(x)=-x²-2ax+b a≠0 Если f(1)=3 и максимальное значение f(x) =4 тогда чему равны а и b?
Решение Из начальных условий f(1)=3 при х=1, следовательно f(1)=-1²-2a*1+b=-2a+b-1
-2a + b - 1 = 3 b -2a = 4
Графиком функции F(x)=-x²-2ax+b является парабола с ветвями направленными вниз так как коэффициент перед x² меньше нуля. Найдем вершину параболы Производная функции равна F'(x)=(-x²-2ax+b)' =-2x-2a Найдем критическую точку приравняв производную к нулю F'(x)=0 -2x-2a =0 х=-а В точке х=-а функция имеет максимум так как ее производная при переходе через эту точку меняет знак с плюса на минус. + 0 - ----------!---------- -а Можно также сразу найти точку максимума параболы так как для параболы y =ax²+bx+c эта точка x =-b/(2a) В нашем примере b=-2a, a=-1 x=-(-2a)/(2*(-1))=-a
Найдем значение максимум подставив x=-a в уравнение функции f(-a)=-(-a)²-2a(-a)+b=-a²+2a²+b=a²+b Из начальных условий максимальное значение равно 4, следовательно a²+b = 4
Для нахождения значения параметров a и b необходимо решить систему уравнений
Поскольку правые части уравнений равны 4 то приравниваем левые части уравнений a²+b=b-2a a²+2a=0 a(a+2)=0 a=0 не подходит так как по условию задачи a≠0 a=-2 Из первого уравнений системы уравнений находим значение параметра b
b=4+2a=4+2(-2)=0
Запишем искомое уравнений функции F(x)=-x²+4x Проверим F(1) =-1+4=3 xmax=-4/(2*(-1))=2 F(2)=-2²+4*2=-4+8=4
Так как находится под модулем, то знак этого трехчлена будет всегда (+), значит при определении промежутка решений неравенства его можно не учитывать, но так как неравенство строгое, то корни данного трехчлена не будут входить в промежуток решения. находим корни:
теперь определяем x^3>0: если x<0, то x^3<0 если x>0, то X^3>0 значит промежутком решения данного неравенства является: x∈(0;2) и (2;8) и (8;+oo) считаем на интервале (-1;7] неравенство верно при x=1; x=3; x=4; x=5; x=6; x=7 - всего 6 целых решений ответ: 6 решений
Это же вероятность, нужно 44/22=2