М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Школьные зн джинн подарил али 840 драгоценных камней. камни лежали в ларцах поровну в каждом ларце. за камни из 28 ларцов али выкупил свободу всех рабов на невольничьем рынке и у него осталось 252 драгоценных камня. сколько драгоценных камней лежало в одном ларце?

👇
Ответ:
гном171
гном171
08.11.2022
Он потратил 840-252=588 камней
588/28=21 камень в каждом ларце
(Поделили количество затраченных камней на количество ларцов, из которых их взяли)
4,5(22 оценок)
Открыть все ответы
Ответ:
Зиколя
Зиколя
08.11.2022

На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные уравнения первого порядка. Для краткости их часто называют просто линейными уравнениями. Материал не представляет особых сложностей, главное, уметь уверенно интегрировать и дифференцировать.

Начнем с систематизации и повторения.

На что в первую очередь следует посмотреть, когда вам предложено для решения любое дифференциальное уравнение первого порядка? В первую очередь необходимо проверить, а нельзя ли у данного диффура разделить переменные? Если переменные разделить можно (что, кстати, далеко не всегда очевидно), то нужно использовать алгоритмы и приемы решения, которые мы рассмотрели на первом уроке – Дифференциальные уравнения первого порядка. Советую посетить этот урок чайникам и всем читателям, которые чувствуют, что их знания и навыки в теме пока не очень хороши.

Если переменные в ДУ разделить не удалось, переходим к следующему этапу – проверяем, а не является ли уравнение однородным? Проверку обычно выполняют мысленно или на черновике, с самим алгоритмом проверки и образцами решения однородных уравнений можно ознакомиться на втором уроке – Однородные дифференциальные уравнения первого порядка.

Если переменные разделить не удалось, и уравнение однородным не является, то в 90% случаев перед вами как раз линейное неоднородное уравнение первого порядка.

Линейное уравнение первого порядка в стандартной записи имеет вид:

Что мы видим?

1) В линейное уравнение входит первая производная .

2) В линейное уравнение входит произведение , где – одинокая буковка «игрек» (функция), а – выражение, зависящее только от «икс».

3) И, наконец, в линейное уравнение входит выражение , тоже зависящее только от «икс». В частности, может быть константой.

Примечание: разумеется, в практических примерах эти три слагаемых не обязаны располагаться именно в таком порядке, их спокойно можно переносить из части в часть со сменой знака.

Перед тем, как перейти к практическим задачам, рассмотрим некоторые частные модификации линейного уравнения.

– Как уже отмечалось, выражение может быть некоторой константой (числом), в этом случае линейное уравнение принимает вид:

– Выражение тоже может быть некоторой константой , тогда линейное уравнение принимает вид: . В простейших случаях константа равна +1 или –1, соответственно, линейное уравнение записывается еще проще: или .

4,6(33 оценок)
Ответ:
ghrtoung
ghrtoung
08.11.2022
В сечении имеем равнобедренный треугольник МРК. МК = МР.
Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4.
Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP:
(по условию МД = a/2, а КД = РД = a/4)
PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) =
= √((4a²+a²-2a²)/16 = (a√3) / 4.
Высота h треугольника РМК равна:
h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8.
Искомая площадь равна:
 S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.
4,5(62 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ