Нет
Пошаговое объяснение:
Рассмотрим все цифри:
0, 2, 4, 5, 6, 8 - не могут быть этими цифрами, так как любое число, которое заканчивается на одно из них не будет простым
Остаётся 1, 3, 7, 9
Из них складываем пары чисел по три:
1, 3, 9 - выходят числа 139, 193, 319(не простое), 391(не простое), 913(не простое), 931(не простое). Значит, откидываем этот вариант
1, 3, 7 - 137, 173, 317, 371(не простое), 713(не простое), 731(не простое). Этот вариант тоже откидываем
1, 7, 9 - 179, 197, 719, 791(не простое), 917(не простое), 971. Не подходит
3, 7, 9 - 379, 397, 739, 793(не простое), 937, 973(не простое). И этот вариант тоже не подходит.
Значит, таких цифр не существует.
Для начала проясним, что называют приведением дроби к новому знаменателю.
Из основного свойства дроби следует, что любая обыкновенная дробь a/b имеет бесконечно много равных ей дробей, которые получаются при умножении числителя и знаменателя исходной дроби на любое натуральное число m. Таким образом, любую обыкновенную дробь a/b мы можем заменить равной ей дробью с большим числителем и знаменателем вида . Так от исходной дроби мы можем перейти к дроби с новым знаменателем.
Теперь интуитивно понятно, что подразумевает приведение дроби к новому знаменателю. Привести дробь к новому знаменателю – это значит умножить числитель и знаменатель исходной дроби на некоторое натуральное число m, в результате получается дробь с новым знаменателем, причем она равна исходной дроби.
Рассмотрим пример. Пусть дана обыкновенная дробь 11/25, и ее нужно привести к новому знаменателю. Умножим числитель и знаменатель этой дроби на 4. Так как 11·4=44 и 25·4=100, то после умножения мы получим дробь 44/100. В итоге дробь 11/25 приведена к дроби с новым знаменателем вида 44/100. Весь процесс принято записывать в виде следующей цепочки равенств: .
Понятно, что исходную дробь можно привести к множеству разных знаменателей (если бы в рассмотренном выше примере мы провели умножение не на 4, а на другое число, то мы бы пришли к дроби с другим знаменателем). Но новым знаменателем данной дроби могут быть не все числа. Новыми знаменателями дроби a/b могут быть лишь числа b·m, кратные числу b (смотрите делители и кратные). Числа, не кратные числу b, не могут быть новыми делителями дроби.