Решение .
Предположим, что шестиугольник только один. Тогда количество вершин у пятиугольников равно 28 - 6 = 22. Этого не может быть, потому что число 22 на 5 не делится.
Если шестиугольник два, то количество вершин у пятиугольников равно 28 - 12 = 16, чего не может быть.
Если шестиугольник три, то количество вершин у пятиугольников равно 28 - 18 = 10. Значит, пятиугольников может быть два.
Если шестиугольников четыре, то количество вершин у пятиугольников равно 28 - 24 = 4, чего не может быть.
Больше четырех шестиугольников быть не может.
Решение .
Предположим, что шестиугольник только один. Тогда количество вершин у пятиугольников равно 28 - 6 = 22. Этого не может быть, потому что число 22 на 5 не делится.
Если шестиугольник два, то количество вершин у пятиугольников равно 28 - 12 = 16, чего не может быть.
Если шестиугольник три, то количество вершин у пятиугольников равно 28 - 18 = 10. Значит, пятиугольников может быть два.
Если шестиугольников четыре, то количество вершин у пятиугольников равно 28 - 24 = 4, чего не может быть.
Больше четырех шестиугольников быть не может.
делители числа 6 - это числа 1, 2, 3 и 6.
множество В = {1; 2; 3; 6}.
множество В - подмножество множества А, т.е. В ⊂ А.