Пошаговое объяснение:
1.
1) 2. 3/4 + 1. 5/16 =
2. 12/16 + 1. 5/16 = 3. 15/16
2) 32 * 3. 15/16 = 32 * 63/16 = 2 * 63/1 = 126/1 = 126
ответ: 126
2.
1) 2. 5/8 * 1. 2/3 = 21/8 * 5/3 = 7/8 * 5/1 = 35/8
2) 24 * 35/8 = 3 * 35/1 = 105/1 = 105
ответ: 105
3.
1) 8. 3/4 + 2. 5/16 =
8. 12/16 + 2. 5/16 = 10. 17/16 = 11. 1/16
2) 16 * 11. 1/16 = 16 * 177/16 = 1 * 177/1 = 177/1 = 177
ответ: 177
4.
1) 2. 2/15 + 1. 5/6 =
2. 4/30 + 1. 25/30 = 3. 29/30
2) 30 * 3. 29/30 = 30 * 119/30 = 1 * 119/1 = 119/1 = 119
ответ: 119
5.
1) 1. 3/13 + 2. 11/26 =
1. 6/26 + 2. 11/26 = 3. 17/26
2) 26 * 3. 17/26 = 26 * 95/26 = 1 * 95/1 = 95/1 = 95
ответ: 95
ответ: y=√[-2*x²-2*x-1+C*e^(2*x)]
Пошаговое объяснение:
Разделив обе части уравнения на y, получим уравнение y'-y=2*x²/y. Это есть уравнение Бернулли вида y'+p(x)*y=f(x)*y^n, где p(x)=-1, f(x)=2*x² и n=-1. Произведём замену переменной по формуле z=y^(1-n)=y². Отсюда y=√z, y'=z'/(2*√z) и уравнение принимает вид z'/(2*√z)-√z-2*x²/√z=0. Умножая его на 2*√z, получаем линейное уравнение относительно z: z'-2*z-4*x²=0. Полагая z=u*v, где u и v - неизвестные пока функции от x, получаем уравнение u'*v+u*v'-2*u*v-4*x²=0, которое запишем в виде v*(u'-2*u)+u*v'-4*x²=0. Так как одной из функций u или v мы можем распорядиться по произволу, то поступим так с u и потребуем выполнения условия u'-2*u=0. Решая это дифференциальное уравнение, найдём u=e^(2*x). Подставляя это выражение в уравнение u*v'-4*x²=0, получим уравнение v'=dv/dx=4*x²*e^(-2*x). Отсюда dv=4*x²*e^(-2*x)*dx и, интегрируя, находим v=-2*x²*e^(-2*x)-2*x*e^(-2*x)-e^(-2*x)+C, где C - произвольная постоянная. Тогда z=u*v=-2*x²-2*x-1+C*e^(2*x) и y=√z=√[-2*x²-2*x-1+C*e^(2*x)]. Проверка: y'=[-4*x-2+2*C*e^(2*x)]/{2*√[-2*x²-2*x-1+C*e^(2*x)]}, y*y'=-2*x-1+C*e^(2*x), y²+2*x²=-2*x²-2*x-1+C*e^(2*x)+2*x²=-2*x-1+C*e^(2*x), y*y'=y²+2*x² - получено исходное уравнение - значит, решение найдено верно.