Отрезки касательных, проведенных к окружности из одной точки, равны... (((центр вписанной в угол окружности лежит на биссектрисе...))) боковая сторона АВ с продолжением будет касательной к обеим окружностям. если провести радиусы обеих окружностей к АВ, то получится прямоугольная трапеция с основаниями-радиусами высотой, равной 8+8 (тк. отрезки касательных равны...))) и второй боковой стороной, равной 12+r а дальше т.Пифагора: (12+r)^2 = 16^2 + (12-r)^2 (12+r)^2 - (12-r)^2 = 16^2 (12+r - (12-r))*(12+r + 12-r) = 16^2 2r * 24 = 16*16 r = 16/3 = 5 целых 1/3
Отрезки касательных, проведенных к окружности из одной точки, равны... (((центр вписанной в угол окружности лежит на биссектрисе...))) боковая сторона АВ с продолжением будет касательной к обеим окружностям. если провести радиусы обеих окружностей к АВ, то получится прямоугольная трапеция с основаниями-радиусами высотой, равной 8+8 (тк. отрезки касательных равны...))) и второй боковой стороной, равной 12+r а дальше т.Пифагора: (12+r)^2 = 16^2 + (12-r)^2 (12+r)^2 - (12-r)^2 = 16^2 (12+r - (12-r))*(12+r + 12-r) = 16^2 2r * 24 = 16*16 r = 16/3 = 5 целых 1/3
D=(-5)²-4*1*6=25-24=1
x1= 5+1 /2 = 3, x2= 5-1 /2 = 2.
2) 4x+2=3x-5
4x-3x= -5-2
x= -7.
3) 5x+8=4x+9
5x-4x=9-8
x=1.
4) 12x-3>6x+9
12x-6x>9+3
6x>12 |:6
x>2; (2; +∞).
5) (3х+6)(х-2)≤0
1. 3х+6=0
3х= -6 |:3
х= -2
2. х-2=0
х=2
3. _+_¯2_–_2_+_
-2≤х≤2; [-2;2].