Предположим, что пятиугольник только один. Тогда количество вершин у шестиугольников равно 34 − 5 = 29. Этого не может быть, потому что число 29 на 6 не делится.
Если пятиугольников два, то количество вершин у шестиугольников равно 34 − 10 = 24. Значит, может быть 4 шестиугольника.
Если пятиугольников три, то количество вершин у шестиугольников равно 34 − 15 = 19, чего не может быть.
Если пятиугольников четыре, то количество вершин у шестиугольников равно 34 − 20 = 14, чего не может быть.
Если пятиугольников пять, то количество вершин у шестиугольников равно 34 − 25 = 9, чего не может быть.
Больше пяти пятиугольников быть не может.
ответ: 4.
Пошаговое объяснение:
Предположим, что пятиугольник только один. Тогда количество вершин у шестиугольников равно 34 − 5 = 29. Этого не может быть, потому что число 29 на 6 не делится.
Если пятиугольников два, то количество вершин у шестиугольников равно 34 − 10 = 24. Значит, может быть 4 шестиугольника.
Если пятиугольников три, то количество вершин у шестиугольников равно 34 − 15 = 19, чего не может быть.
Если пятиугольников четыре, то количество вершин у шестиугольников равно 34 − 20 = 14, чего не может быть.
Если пятиугольников пять, то количество вершин у шестиугольников равно 34 − 25 = 9, чего не может быть.
Больше пяти пятиугольников быть не может.
ответ: 4.
a1= - 3
a10=a1+9d= - 3+9*2=15
S10=(a1+a10)/2*10=(-3+15)*5=60