Выведем уравнение касательной к графику функции y=f (x) в точке с абсциссой х0. Для наглядности используем график из предыдущего урока 10.3. («Определение производной. Геометрический смысл производной») и выведем уравнение касательной МТ.
Так как точку М мы взяли произвольно, то должны получить уравнение касательной, которое будет справедливо для любой функции y=f (x), имеющей касательную в определенной точке с абсциссой х0.
Итак, любую прямую можно записать в виде y=kx+b, где k — угловой коэффициент прямой. Мы теперь знаем, что в качестве углового коэффициента можно взять f '(х0) — значение производной функции y=f (x) в точке с абсциссой х0. Эта точка является общей точкой для функции и для касательной МТ.
Таким образом, касательная МТ имеет вид: y=f '(х0)·x+b. Осталось определить значение b. Это мы сделаем просто: подставим координаты точки М в последнее равенство, т.е. вместо х запишем х0, а вместо у подставим f (х0). Получаем равенство:
f (х0) =f '(х0)·х0+b.
Отсюда b=f (х0) - f '(х0)·х0. Подставляем это значение b в равенство: y=f '(х0)·x+b. Тогда:
y =f '(х0)·х+f (х0) - f '(х0)·х0. Упростим.
y=f (х0)+(f '(х0)·х - f '(х0)·х0) или
y=f (х0)+f '(х0)(х - х0). Это и есть искомое уравнение касательной МТ.
Представим человека. Назовем его Ваня. Рассмотрим самый удачный случай. До первого урока он знает 1 шутку, которую он придумал сам. На 1 уроке сели 2 человека. Они обменялись шутками. Каждый знает две. И так на каждой парте. На 2 уроке Ваня садится с другим человеком. И Ваня, и его новый сосед знают по 2 шутки. Они обмениваются ими. Получаем 4 шутки (2 знал и 2 получил). Весь класс знает 4 шутки. У Вани 3 урок. Он сел с другим соседом. Сосед говорит ему 4 шутки и Ваня 4 шутки. 8 узнал. Как и весь класс. На 4 уроке всё тоже самое. 8 знал, 8 получил. 16. На пятом уроке он знал 16 шуток, да ещё от нового соседа (который не садился с Ваней на других уроках) слышит 16 шуток. Получаем 32 шутки. Но всего их 26. Как так? Значит некоторые шутки повторялись. Но всё же теперь Ваня знает всё шутки. И весь класс. Стоит учесть, что этот работает, если каждый ученик садился с другим учеником каждый урок и никакая пара не повторялась. ОТВЕТ: 5 уроков.
q=