М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
oksanakrasilnikova
oksanakrasilnikova
26.07.2022 01:13 •  Математика

Выражение – 4(3,5x – 4) – (7 – 2,1x) + 5(0,3x – 5) и вычислите его значение при х=-10/27 всё по действиям

👇
Ответ:
sonechkapolukh
sonechkapolukh
26.07.2022
4(3,5х - 4) - (7 - 2,1х) + 5(0,3х -5) =
= 14х - 16 - 7 + 2,1х + 1,5х - 5 =
= 17,6х - 48.

17,6 * (-10/27) - 48 = -1472/27
4,6(90 оценок)
Открыть все ответы
Ответ:

d²y/dx²=2*dy/dx

Можно переписать:

y"=2y' - это линейное однородное ДУ второго порядка с постоянными коэффициентами.

y"-2y'=0   (1)

Составим и решим характеристическое уравнение:

р²-2p=0

p*(p-2)=0

p₁=0

p₂=2

Получены два различных действительных корня, поэтому общее решение имеет вид:

y=C₁*e^(p₁*x)+C₂*e^(p₂*x), где p₁ и p₂ - корни характеристического уравнения, C₁ и C₂ - константы.

y=C₁*e^(0*x)+C₂*e^(2*x)

y=C₁+C₂*e^(2*x) - общее решение  (2).

Теперь нужно найти частное решение, соответствующее заданным начальным условиям. Наша задача состоит в том, чтобы найти такие значения констант С₁ и С₂, чтобы выполнялись оба условия.

Сначала используем начальное условие y(0)=3/2:

y(0)=C₁+C₂*e^(2*0)=C₁+C₂

Согласно начальному условию получаем первое уравнение:

C₁+C₂=3/2    (3)

Далее берем общее решение (2) и находим производную:

y'=(C₁+C₂*e^(2*x))'=0+2*C₂*e^(2*x)=2*C₂*e^(2*x)

Используем второе начальное условие y'(0)=1:

y'(0)=2*C₂*e^(2*0)=2*C₂

2*C₂=1

C₂=1/2          (4)

Теперь поддставим (4) в (3):

C₁+1/2=3/2

C₁=1              (5)

Остается подставить (4) и (5) в (2):

y=1+3/2*e^(2*x) - частное решение.

 

ответ: y=C₁+C₂*e^(2*x) - общее решение

            y=1+3/2*e^(2*x) - частное решение

Подробнее - на -

Пошаговое объяснение:

4,5(77 оценок)
Ответ:
Andrew12331
Andrew12331
26.07.2022

Пошаговое объяснение:

I вариант решения

пусть прямая симметричная прямой y=-2x+3  имеет вид у=kx+b

найдем точки пересечения прямой y=-2x+3  с осями координат относительно оси ОУ

с осью ОХ у=0; -2x+3=0; 2x=3; x=1,5;  (1,5;0)

с осью ОY x=0;  y=3; (0;3)

так как прямые симметричны то

- они обе проходят через точку (0;3)

- симметричная прямая проходит через точку  противоположную точке (1,5;0) точку (-1,5;0)

⇒ симметричная прямая проходит через точки (0;3) и (-1,5;0)

подставим координаты точки (0;3)  в уравнение симметричной прямой  у=kx+b координату точки (0;3)

получим 3=к*0+b;   b=3

подставим координаты точки (-1,5;0)  и значение b=3  в уравнение симметричной прямой  у=kx+b получим

0=-1,5к+3 ; 1,5к=3; k=3/1,5=2

подставим b=1; k=2 в уравнение у=kx+b

у=2х+3

===============================================

II  вариант решения - тригонометрический

так как прямые симметричны то их углы наклона к оси ОХ будут в сумме давать 180°

так как tg(180°-а)=-tga то угловые коэффициенты симметричных прямых будут к₁ и к₂ противоположными числами а значение b₁ и b₂ будут одинаковыми так как обе прямые пересекают ось ОУ в одной точке ⇒ к₂=-к₁=-(-2)=2; b₂=b₁=3

уравнение прямой симметричной прямой y=-2x+3 относительно оси ОУ

у=2х+3


Запишите уравнение прямой, симметричной прямой y=-2x+3 относительно оси оу
4,4(91 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ