Пусть дан прямоугольный треугольник АВС с прямым углом А,тогда
высота прямоугольного треугольника ВН,проведённая к гипотенузе ВС,есть среднее пропорциональное между проекциями катетов на гипотенузу,т.е. АН= корню квадратному из ВН*НС=12(см)
тогда рассмотрим треугольник ВАН (прямоугольный, с прямым углом ВНА), и по теореме Пифагора получаем, что ВА в квадрате=ВНквадрат+НАквадрат
ВА квадрат=9 в квадрате+12 в квадрате, ВА квадрат=81+144=225=>
ВА=корень квадратный из 225,ВА=15 (см_)
тогда берём первоначальный треугольник АВС и по теореме Пифагора находим катет АС,
АС квадрат=ВС квадрат-ВА квадрат,ВС=ВН+НС=9+16=25(см)
АС квадрат= 25 в квадрате-15 в квадрате
АС квадрат=625-225=400
АС=корень квадратный из 400=20(см)
ответ:20 см и 15 см
Пошаговое объяснение:
Пошаговое объяснение:
2 2/9 : 4/3+1/3
1) В первую очередь выполняются действия в скобках. Если нет скобок, то умножение и деление - по очередности слева направо.
В этом примере деление смешанной число на обыкновенную дробь. Чтобы выполнить это деление надо смешанное число перевести в неправильную дробь:
2 2/9 = (2*9+2)/9 = 20/9 (целое число умножаем на знаменатель дроби и прибавляем числитель).
Теперь деление: Чтобы разделить дробь на дробь, надо делимое умножить на число обратное делителю:
20/9 : 4/3 = 20/9 * 3/4 = 20*3/9*4 => 5/3 =>
Чтобы умножить дробь на дробь, надо в- первых, попытаться сократить. Здесь у нас сокращается 20 и 4; 9 и 3. Если же не сокращается, то числитель первой дроби умножить на числитель второй дроби, а знаменатель первой дроби умножить на знаменатель второй дроби. Полученную в результате дробь, если она неправильная (числитель больше знаменателя) выделить целую часть
получаем: => 5/3 = 1 2/3;
2) сложение: 1 2/3 + 1/3 => складываем отдельно целые и дробные части: (1 + 2/3) + (0 + 1/3) = (1+0) + (2+1)/3 = 1 + 3/3 = 1 + 1 = 2.
ответ 2.
тогда количество учеников, которые любят играть в «Battlefield 3» = х+4;
тогда:
х+х+4+8=20
2х=8
х=4
тогда количество учеников, которые любят играть в «Battlefield 3» = 8 учеников.
ответ: 8 учеников.