4*4*4=64см^3(обьем большого кубика)
1*1*1=1см^3(обьем маленького кубика)
64:1=64(маленьких кубика в кубике размером 4*4*4
кубики у которых не будет покрашено граней будет восемь(4-2)*(4-2)*(4-2)=8кубиков не будет покрашено.
64-8=56кубиков у которых покрашена хотя бы одна грань
56*1=56см(будет ряд если выложить кубики у которых покрашена хотя бы 1 грань
Имеем многочлен
Корнями многочлена называют корни уравнения
Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена:
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— правда
Следовательно, — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на (см. вложение).
После этого исходное уравнение можно записать разложив на множители:
Решаем второе уравнение:
Рациональные корни:
Имеем многочлен
Корнями многочлена называют корни уравнения
Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена:
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— правда
Следовательно, — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на (см. вложение).
После этого исходное уравнение можно записать разложив на множители:
Решаем второе уравнение:
Рациональные корни: