М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
КириллПос
КириллПос
28.04.2020 21:31 •  Математика

1. найди половину от числа 40,9 2.запишите одну четвертую часть от числа 33 3.запешите число, половина от которого равна 7 целых 5/6 4.найди одну восьмую часть от числа 10 целых 1/3 5. найди одну сотую частьот числа 89,89 6.запешите число, одна третья часть от которого равна 25,9 7. найдите одну шестую часть от числа 1001 8. запишите число, одна десятая часть которого равна значению суммы чисел 1,7 и 1/7

👇
Ответ:
stacymacalister
stacymacalister
28.04.2020

Пошаговое объяснение:


1. найди половину от числа 40,9 2.запишите одну четвертую часть от числа 33 3.запешите число, полови
4,4(89 оценок)
Открыть все ответы
Ответ:
ученик1443
ученик1443
28.04.2020

По условию никакие три из диагоналей, кроме случая, когда все три диагонали странные не пересекаются в одной точке. Заметим, что каждой паре пересекающихся диагоналей можно поставить в соответствие четыре вершины 30-тиугольника с концами диагоналей в этих вершинах. И наоборот любые четыре вершины однозначно определяют пару пересекающихся диагоналей с концами в этих вершинах. Таким образом установлено взаимно однозначное соответствие между каждой парой пересекающихся диагоналей и четверкой вершин им соответствующих. Подсчитаем вначале сколько всего точек пересечения диагоналей будет в данном выпуклом 30-тиугольнике без учета того, что 10 из его диагоналей пересекаются в одной точке. Так как каждой паре пересекающихся диагоналей соответствует четверка вершин многоугольника, то общее количество точек пересечения диагоналей дается количеством сочетаний из 30-ти вершин по 4, то есть C⁴₃₀ = 30!/4!(30-4)! = 30!/4!26! = 30*29*28*27/24 = 657720/24 = 27405. Общее количество точек пересечения диагоналей равно 27405. Теперь учтем тот факт, что 10 диагоналей в данном 30-тиугольнике пересекаются в одной точке. Заметим также, что поскольку эти 10 диагоналей пересекаются в одной точке, то концы никаких двух из них не исходят из одной вершины. А это значит, что если бы они не пересекались в одной точке, то точек пересечения было бы больше на количество сочетаний из десяти по два C²₁₀ - 1. Вычитаем единицу, поскольку имеется одна общая точка пересечения. Подсчитаем C²₁₀ = 10!/2!(10-2)! = 10!/2!8! = 10*9/2 = 90/2 = 45, имеем на C²₁₀ - 1 = 45 - 1 = 44 точки пересечения меньше общего числа подсчитанного ранее. Тогда общее количество точек пересечения в таком многоугольнике будет равно C⁴₃₀ - (C²₁₀ - 1) = C⁴₃₀ - C²₁₀ + 1 = 27405 - 45 - 1 = 27405 - 44 = 27361.

ответ: Всего 27361 точка пересечения.

4,4(45 оценок)
Ответ:
mot3333
mot3333
28.04.2020

По условию никакие три из диагоналей, кроме случая, когда все три диагонали странные не пересекаются в одной точке. Заметим, что каждой паре пересекающихся диагоналей можно поставить в соответствие четыре вершины 30-тиугольника с концами диагоналей в этих вершинах. И наоборот любые четыре вершины однозначно определяют пару пересекающихся диагоналей с концами в этих вершинах. Таким образом установлено взаимно однозначное соответствие между каждой парой пересекающихся диагоналей и четверкой вершин им соответствующих. Подсчитаем вначале сколько всего точек пересечения диагоналей будет в данном выпуклом 30-тиугольнике без учета того, что 10 из его диагоналей пересекаются в одной точке. Так как каждой паре пересекающихся диагоналей соответствует четверка вершин многоугольника, то общее количество точек пересечения диагоналей дается количеством сочетаний из 30-ти вершин по 4, то есть C⁴₃₀ = 30!/4!(30-4)! = 30!/4!26! = 30*29*28*27/24 = 657720/24 = 27405. Общее количество точек пересечения диагоналей равно 27405. Теперь учтем тот факт, что 10 диагоналей в данном 30-тиугольнике пересекаются в одной точке. Заметим также, что поскольку эти 10 диагоналей пересекаются в одной точке, то концы никаких двух из них не исходят из одной вершины. А это значит, что если бы они не пересекались в одной точке, то точек пересечения было бы больше на количество сочетаний из десяти по два C²₁₀ - 1. Вычитаем единицу, поскольку имеется одна общая точка пересечения. Подсчитаем C²₁₀ = 10!/2!(10-2)! = 10!/2!8! = 10*9/2 = 90/2 = 45, имеем на C²₁₀ - 1 = 45 - 1 = 44 точки пересечения меньше общего числа подсчитанного ранее. Тогда общее количество точек пересечения в таком многоугольнике будет равно C⁴₃₀ - (C²₁₀ - 1) = C⁴₃₀ - C²₁₀ + 1 = 27405 - 45 - 1 = 27405 - 44 = 27361.

ответ: Всего 27361 точка пересечения.

4,4(6 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ