М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
JR123
JR123
01.07.2021 10:02 •  Математика

(3тонны 4центнера 16кг - 32ц 9кг)×760,выразите в тонах и килограммах

👇
Ответ:
bedboy777
bedboy777
01.07.2021
1 т = 1000 кг
1 ц = 100 кг
Следовательно:
(3416 кг - 3209 кг) * 760= 207 кг * 760 = 157320 кг = 157 т 320 кг
4,4(79 оценок)
Открыть все ответы
Ответ:
Toktorovaskar
Toktorovaskar
01.07.2021

Довідник школяра

Сучасна японська література

Сучасна Японія являє собою країну контрастів. Бурхливий розвиток техніки й промисловості в період після другої світової війни висунуло Японію в число передових капіталістичних країн. Це обумовило зміну життя всього суспільства: почалося руйнування древніх підвалин сім’ї, сільського укладу, зміна психології людей, що формувалася протягом багатьох століть під впливом релігійно-філософських навчань буддизму й конфуціанства, що прийшли в Японію з Індії й Китаю в VII-VIII століттях

4,7(56 оценок)
Ответ:
ivangladkikh
ivangladkikh
01.07.2021

я думаю что да

Пошаговое объяснение:

Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с этого набора, кладя гири на обе чашки весов.

  а) Докажите, что никакой груз нельзя взвесить этими гирями более чем

  б) Приведите пример груза, который можно взвесить ровно

Решение

  Пусть Kn(P) – число которыми можно взвесить вес P, используя гири веса  1, 2,..., 2n,  и      (максимальное число которыми можно взвесить какой-либо вес с этих гирь). Очевидно,  K0 = 1,  K1 = 2.

  а) Наша задача – доказать, что  K9 ≤ 89.  Мы докажем, что  Kn+1 ≤ Kn + Kn–1  для каждого  n ≥ 1.  Последовательно применяя это неравенство, получим:

K2 ≤ 3,  K3 ≤ 5,  ..., K9 ≤ 89.

  Рассмотрим гири  1, 2, ..., 2n+1  и какой-либо вес P. Если P чётно, то, очевидно, при его взвешивании гиря веса 1 не используется, то есть взвесить вес P можно тем же числом что и вес P/2 с гирь  1, 2,..., 2n,  то есть  Kn+1(P) = Kn(P/2).  Если P делится на 4, то аналогично

Kn+1(P) = Kn–1(P/4).

  Пусть P нечётно. Тогда при его взвешивании обязательно должна быть использована гиря веса 1. Её можно положить как на одну, так и на другую чашу весов. В одном случае мы сведём задачу к взвешиванию груза веса  P – 1,  в другом – к взвешиванию груза веса  P + 1  гирями веса  2, 4,..., 2n+1.  Таким образом,  Kn+1(P) = Kn+1(P–1) + Kn+1(P+1).  Так как оба числа  P – 1  и  P + 1  чётны, а одно из них делится на 4, то в одном из случаев мы имеем не более взвешивания, в другом – не более Kn. Итак,  Kn+1(P) ≤ Kn + Kn–1.

  б) Пример: 171 г. Рассмотрим последовательность  1, 1, 3, 5, 11, 21, 43, 85, 171.  Легко проверить, что для каждого члена Pn+1 этой последовательности пара чисел  Pn+1 – 1  и  Pn+1 + 1  совпадает с парой чисел  2Pn и 4Pn–1  (не обязательно в том же порядке). Отсюда, как видно из а), следует равенство

Kn+1(Pn+1) = Kn(Pn) + Kn–1(Pn–1),  а так как  K1(P1) = 2,  K2(P2) = 3,  то, последовательно вычисляя, получим  K9(171) = K9(P9) = 89.

ответ

б) Например, 171 г.

Замечания

1. Вес 171 – не единственный, который можно взвесить ровно Вес  341 = 512 – 171  (и только он) обладает тем же свойством.

2. Последовательность из пункта б) можно продолжить: формула общего члена этой последовательности:      Рассмотрение этой последовательности доказывает, что  Kn+1 = Kn + Kn–1  для всех  n ≥ 1,  то есть числа Kn (с точностью до сдвига нумерации) совпадают с числами Фибоначчи.

4,4(43 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ