ответ:
найдём длину перпендикуляра из точки пересечения диагоналей ромба на сторону ромба (этот перпендикуляр равен половине высоты ромба).
по свойству высоты h прямоугольного треугольника она равна среднему из длин отрезков, на которые эта высота делит гипотенузу.
h = √(4*25)= √100 = 10 см.
теперь находим длины половин диагоналей ромба как гипотенузы прямоугольных треугольников с катетами 25 и h, и 4 и h.
(d1/2) = √(25² + 10²) = √(625 + 100) = √725 = 5√29 см.
(d2/2) = √(4² + 10²) = √(16 + 100) = √116 = 2√29 см.
ответ:
диагонали ромба равны 10√29 и 4√29 см
подробнее - на -
пошаговое объяснение:
делим все на 7 : 3(0.8-0.7у) в тут на 13 : 6(0.04-0.3у)=0.6
2,4-2,1у-0.24-1,8у=0.6
-2,1у-1,8у=0,6-2,4+0,24
-3,8у=-1,56
у=0,4