∠1 = х ∠2 = х +10° ∠3 = х +10° -10° = х треугольник будет равнобедренным. х + х +10° + х = 180° 3х = 170° х = 170°/3 = 56° 2/3 (∠1 = ∠3) 56° 2/3 +10° = 66° 2/3 (∠2)
Пусть количество грубых ошибок равно х, а не грубых - у. Перепишем условия задачи, используя это: 1) x≥1/4*(x+y)/*4 4x≥x+y 3x≥y 2) 3x=(y+2*30)/5
Так как 3x≥y и 3x=(y+60)/5, то (y+60)/5≥y/*5 y+60≥5y 60≥4y/:4 y≤15
С одной стороны, так как 3x≥y и y=15x-60, тогда 3x≥15x-60 60≥12x/:12 x≤5
С другой стороны, получается система неравенств x≤5, y≤15. Из этого следует, что x+y≤20. Так как МИНИМАЛЬНОЕ количество человек, написавших диктант без ошибок будет при условии, что каждый ученик допустит по одной ошибке. Наибольшее количество грубых ошибок равно 5, а не грубых - 15. Проверим, выполняется ли при этих значениях условие задачи: 15x=y+60, 15*5=15+60, 75=75 Значит, данные значения являются решением данной задачи. Всего учеников было 30, без ошибок напишут 30-15-5=10 человек.
Пусть количество грубых ошибок равно х, а не грубых - у. Перепишем условия задачи, используя это: 1) x≥1/4*(x+y)/*4 4x≥x+y 3x≥y 2) 3x=(y+2*30)/5
Так как 3x≥y и 3x=(y+60)/5, то (y+60)/5≥y/*5 y+60≥5y 60≥4y/:4 y≤15
С одной стороны, так как 3x≥y и y=15x-60, тогда 3x≥15x-60 60≥12x/:12 x≤5
С другой стороны, получается система неравенств x≤5, y≤15. Из этого следует, что x+y≤20. Так как МИНИМАЛЬНОЕ количество человек, написавших диктант без ошибок будет при условии, что каждый ученик допустит по одной ошибке. Наибольшее количество грубых ошибок равно 5, а не грубых - 15. Проверим, выполняется ли при этих значениях условие задачи: 15x=y+60, 15*5=15+60, 75=75 Значит, данные значения являются решением данной задачи. Всего учеников было 30, без ошибок напишут 30-15-5=10 человек.
∠2 = х +10°
∠3 = х +10° -10° = х
треугольник будет равнобедренным.
х + х +10° + х = 180°
3х = 170°
х = 170°/3 = 56° 2/3 (∠1 = ∠3)
56° 2/3 +10° = 66° 2/3 (∠2)