1) Находим область определения: вся числовая ось, кроме х = -5 / 4 (при этом значении знаменатель превращается в ноль). 2) Находим точки пересечения с осями: х = 0 у = -3/5 это точка пересечения с осью у. у = 0 надо числитель приравнять 0: 2х - 3 = 0 х = 3/2 это точка пересечения с осью х. 3) Исследуем функцию на парность или непарность: Функция называется парной, если для любого аргумента с его областью обозначения будет f(-x)=f(x), или же непарной - если для любого аргумента с областью обозначения будет f(-x)=-f(x). К тому же, график парной функции будет симметричным относительно оси ординат, а график непарной - симметричным относительно точки (0;0). Правда, чаще встречается название этих свойств функции как чётность и нечётность. 2*x - 3 -3 - 2*x ---------- = ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет 2*x - 3 -3 - 2*x ---------- = - ---------- 1 1 (4*x + 5) (5 - 4*x) - Нет, значит, функция не является ни чётной, ни нечётной. 4) Исследуем функцию на монотонность: — это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает. Если производная положительна, то функция возрастает и наоборот. . Так как переменная в квадрате, то производная всегда положительна, а функция возрастающая на всей числовой оси (кроме х = -5/4). 5) Находим экстремумы функции: Так как переменная находится в знаменателе, то производная не может быть равна нулю. Следовательно, функция не имеет ни максимума, ни минимума. 6) Исследуем функции на выпуклость, вогнутость: Если вторая производная меньше нуля, то функция выпуклая, если производная больше нуля - то функция вогнутая. Вторая производная равна . При x > (-5/4) функция выпуклая, при x < (-5/4) функция вогнута. 7) Находим асимптоты графика функции: Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 2*x - 3 lim ------- = 1/2 x->-oo4*x + 5 значит,уравнение горизонтальной асимптоты слева:y = 1/2 2*x - 3 lim ------- = 1/2 x->oo4*x + 5 значит,уравнение горизонтальной асимптоты справа:y = 1/2Наклонные асимптотыНаклонную асимптоту можно найти, подсчитав предел функции (2*x - 3)/(4*x + 5), делённой на x при x->+oo и x->-oo 2*x - 3 lim ----------- = 0 x->-oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой справа 2*x - 3 lim ----------- = 0 x->oox*(4*x + 5) значит,наклонная совпадает с горизонтальной асимптотой слева 8) Можно найти дополнительные точки и построить график График и таблица точек приведены в приложении.
Тметим на координатной прямой точки с координатами -3 и 2. если точка расположена между ними, то ей соответствует число, которое больше -3 и меньше 2. верно и обратное: если число х удовлетворяет условию -3< x< 2 , то оно изображается точкой, лежащей между точками с координатами -3 и 2. множество всех чисел, удовлетворяющих условию -3< x< 2, называется числовым промежутком или просто промежутком от -3 до 2 и обозначается так: (-3; 2). на рисунках изображены множество чисел х, для которых выполняется неравенство х< 10 и х≤10. эти множества представляют собой промежутки, обозначаемые соответственно (-∞; 10) и (-∞; 10]. читается так: число х принадлежит промежутку от минус бесконечности (-∞) до 10 (х< 10) и число х принадлежит промежутку от минус бесконечности (-∞) до 10, включая число 10 (х≤10). знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. промежуток [3; 5] является пересечением промежутков [-1; 5] и [3; 7]. это можно записать так: [-1; 5]∩[3; 7]=[3; 5].промежутки [0; 4] и [6; 10] не имеют общих элементов. если множество не имеет общих элементов, то говорят, что их пересечение пусто. значит, пересечение промежутков [0; 4]∩[6; 10]=0. объединение числовых промежутков каждое число из промежутка [1; 7] принадлежит хотя бы одному из промежутков [1; 5] и [3; 7], то есть, либо промежутку [1; 5], либо промежутку [3; 7], либо им обоим. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают . промежуток [1; 7] является объединением промежутков [1; 5] и [3; 7]. это можно записать так: заметим, что объединение промежутков не всегда представляет собой промежуток, например множество не является промежутком. 1. числовым промежутком называется множество всех чисел, удовлетворяющих неравенству.2. знак равенства в неравенстве обозначается квадратной скобкой в указании промежутка.3. множество, составляющее общую часть некоторых множеств а и в, называют пересечением этих множеств и обозначают а∩в. 4. множество, состоящее из элементов, принадлежащих хотя бы одному из множеств а и в, называют объединением этих множеств обозначают .
12 :4=3 см в кв.-площадь фигуры должна быть нарисована .