244262
Пошаговое объяснение:
Заметим, что если из каждой цифры наших чисел вычесть 1, то у нас получатся подряд идущие числа в шестеричной записи :
доказательство этого:
наши числа состоят из цифр от 1 до 6
1111111
11111111111112
11111111111112...
11111111111112...1111116
11111111111112...11111161111121
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:0000000
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...0000005
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010и мы видим, что n-ое число соответствует записи числа (n-1) в шестеричной системе счисления, дополненной вначале нулями до 7 цифр
Пользуясь переводом из 10-системы в 6-стстему (смотри прикрепленное изображение заметим, что
12379 (10)= 133151 (6)
—›Таким будет 12379-е число в шестеричной записи, так как мы считаем с 0. Не забудем прибавить единицу, так как мы отнимаем ее из каждого разряда.
то есть получаем число 244262
244262
Пошаговое объяснение:
Заметим, что если из каждой цифры наших чисел вычесть 1, то у нас получатся подряд идущие числа в шестеричной записи :
доказательство этого:
наши числа состоят из цифр от 1 до 6
1111111
11111111111112
11111111111112...
11111111111112...1111116
11111111111112...11111161111121
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:0000000
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...0000005
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010
11111111111112...11111161111121если мы каждую цифру уменьшим на 1, то получим:00000000000001...00000050000010и мы видим, что n-ое число соответствует записи числа (n-1) в шестеричной системе счисления, дополненной вначале нулями до 7 цифр
Пользуясь переводом из 10-системы в 6-стстему (смотри прикрепленное изображение заметим, что
12379 (10)= 133151 (6)
—›Таким будет 12379-е число в шестеричной записи, так как мы считаем с 0. Не забудем прибавить единицу, так как мы отнимаем ее из каждого разряда.
то есть получаем число 244262
4x^2-5x-2xa-12
Пошаговое объяснение:
2x^2-5x-12=(2x-4x)(x-a)
2x^2-5x-12=2x^2-2xa-4x^2+4xa-раскрытие скобок
2x^2-2x^2+4x^2-5x+2xa-4xa-12=0-приравнивание к нулю
4x^2-5x-2xa-12