1. Числа, используемые при счёте.
2. Часть отрезка, ограниченная двумя точками.
4. Переместительный (коммутативный) закон сложения: m + n = n + m . Сумма не меняется от перестановки её слагаемых.
Переместительный (коммутативный) закон умножения: m · n = n · m . Произведение не меняется от перестановки его сомножителей.
Сочетательный (ассоциативный) закон сложения: ( m + n ) + k = m + ( n + k ) = m + n + k . Сумма не зависит от группировки её слагаемых.
Сочетательный (ассоциативный) закон умножения: ( m · n ) · k = m · ( n · k ) = m · n · k . Произведение не зависит от группировки его сомножителей.
Распределительный (дистрибутивный) закон умножения относительно сложения: ( m + n ) · k = m · k + n · k .
5. (a+b)*c=a*c+b*c
6. Уравнение – это равенство, содержащее одну или несколько переменных.
7. Вычислить значение перемннной.
11. Приводим к одному знаменателю. У какой дроби числитель больше числителя другой дроби, та и больше.
15. Работаем с числителями.
{a₁q⁴ - a₁ = 15
{a₁q³ - a₁q = 3.
Вынесем за скобки общий множитель:
{a₁(q⁴ - 1) = 15 {a₁(q² - 1)(q² + 1) = 15
{a₁q(q² - 1) = 3 {a₁q(q² - 1) = 3.
Разделим левые и правые части равенств первое на второе:
(q² + 1) / q = 5.
Получаем квадратное уравнение:
q² - 5q + 1 = 0.
Квадратное уравнение, решаем относительно q:
Ищем дискриминант:D=(-5)^2-4*1*1=25-4=21;
Дискриминант больше 0, уравнение имеет 2 корня:
q₁=(√21-(-5))/(2*1)=(√21+5)/2=√21/2+5/2=√21/2+2.5 ≈ 4.791288;
q₂=(-√21-(-5))/(2*1)=(-√21+5)/2=-√21/2+5/2=-√21/2+2.5 ≈ 0.208712.
a₁(₁) = 15 / (q₁⁴ - 1) = 0.028517.
a₁(₂) = 15 / ( (q₂⁴ - 1) = -15.028517.
Получаем 2 прогрессии: