Так как пирамида правильная, то ее грани - равные равнобедренные треугольники. Следовательно, для решения задачи достаточно вычислить площадь одного такого треугольника и умножить ее на 5. Рассмотрим такой треугольник. Его основание равно 4, а высота, проведенная к основанию, - 7,3. Тогда S(тр) = 0.5*4*7,3 = 14,6. Тогда площадь боковой поверхности: S(бок) = 5*S(тр) = 5*14,6 = 73. ответ: 73.
Полная поверхность шара радиусом R = 10 см равна S(ш) = 4Pi*R^2 = 4Pi*10^2 = 400Pi кв. см.При высверливании отверстия радиусом r = 6 см получаем: пропадают 2 шаровых сегмента высотой h = 2 см и добавляется внутренняя боковая поверхность цилиндра радиусом r = 6 см и высотой H = 16 см.Если ты нарисуешь шар с вырезанным цилиндром, то поймешь, что радиус цилиндра, половина его высоты и радиус шара составляют прямоугольный треугольник с катетом 6 см и гипотенузой 10 см.По т. Пифагора второй катет, то есть половина высоты цилиндра, равен 8 см. Значит, сегмент имеет высоту 2 см.Площадь шарового сегмента равна S(сег) = 2Pi*R*h = 2Pi*10*2 = 40Pi кв.см.Площадь боковой поверхности внутреннего цилиндраS(ц) = 2Pi*r*H = 2Pi*6*16 = 192Pi кв.см.Полная площадь поверхности равнаS = S(ш) - 2S(сег) + S(ц) = 400Pi - 80Pi + 192Pi = 512Pi кв.см.
Рассмотрим такой треугольник. Его основание равно 4, а высота, проведенная к основанию, - 7,3. Тогда S(тр) = 0.5*4*7,3 = 14,6.
Тогда площадь боковой поверхности: S(бок) = 5*S(тр) = 5*14,6 = 73.
ответ: 73.