Найдём значение каждой дроби:
а) 13 + 4/13 * 4 = 17/52.
Действительно, 17 и 52 не делятся на 17.
б) 23 + 5/23 * 6 = 28/138.
Мы можем сократить дробь на 2:
28/138 = 14/69.
Дальше мы сократить эту дробь не можем.
в) 31 + 10/30 - 10 = 41/20.
Эту дробь мы сократить не можем.
г) 71 - 10/41 - 10 = 61/31.
Эту дробь мы также сократить не можем.
д) 41 + 6/53 * 6 = 47/318.
Эта дробь также несократима.
е) 101 + 2/109 - 2 = 103/107.
И эту дробь мы тоже сократить не можем.
Можно сократить только дробь б).
Пошаговое объяснение:
Как-то так
ответ: х₁=1, х₂=2; х₃=n/2, если n=2; 3;4.
Пошаговое объяснение:1) Сначала найдём ОДЗ: подкореноое выражение должно быть неотрицательно, т.е. 3х - х² - 2 ≥ 0 ⇔ х²-3х + 2 ≤ 0. Через дискриминант Д = 9 - 8=1 или по т. Виета х₁=1, х₂=2; функция у=х²-3х + 2 ≤ 0 на [1; 2] ОДЗ: х∈ [1; 2] 2) Уравнение представляет из себя произведение двух множителей, оно равно нулю, если хотя бы один из множителей равен нулю, т.е. √(3х-х²-2) =0 или Sin 2πх=0 ⇒ а) 3х-х²-2 =0 х₁=1, х₂=2 б) 2πх=nπ, где n∈Z, х₃= nπ/(2π)=n/2, n∈Z 3) Корни х₁=1, х₂=2 удовлетворяют ОДЗ, х₃=n/2 удовлетворяет ОДЗ, если n=2; 3;4.
416 : х = 50 - 24
416 : х = 26
х = 416 : 26
х = 16
Проверка: 24 + 416 : 16 = 50
24 + 26 = 50
50 = 50