Дана трапеция АВСД. Основание АД=22. ДМ - биссектриса, точка М - точка пересечения биссектрисы и боковой стороны АВ, АМ=10, МВ=5
Проведём прямую МК параллельную АД, /КМД=/МДА - накрест лежащие. /КДМ=/МДА, т.к. ДМ - биссектриса, следовательно, /КДМ=/КМД, т.е. треугольник МКД равнобедренный (по признаку), имеем МК=КД, но КД=АМ=10, то МК=10
МН - высота треугольника АМД, в нём АН=(22-10):2=6 (по свойству оснований равнобокой трапеции). По Т.Пифагора находим МН как катет прямоугольного треугольника АМН с гипотенузой 10 и другим катетом 6, МН=8.ВО перпендикуляр к МК. Треугольники АМН и МВО подобны с к=2, т.е. ВО=8:2=4, МО=6:2=3.
Имеем: высота трапеции равна 8+4=12, второе основание ВС=10-3·2=4 (по свойству оснований равнобокой трапеции)
Площадь трапеции равна полусумме оснований умноженная на высоту, т.е. S=(4+22):2·12=156
Я не буду писать знак "{" перед каждым новым пунктом, а ты пиши!
7x - 4y = 11,5 / 5 35x - 20y = 57,5 71x = 35,5
=> => x = 0,5
9x + 5y = -5,5 / 4 36x + 20 y = -22 y = 7x - 4 y = 11,5
y = 3,5 - 4 y = 11,5
y = 11,5 - 3,5 = 8