ответ: нет . Более того , невозможно получить произвольное натуральное число N.
Пошаговое объяснение:
Найдем среди чисел от 2 жо 1994 число содерщащее в делителях максимальную степень двойки.
Такое число единственно и равно : 2^10=1024
Предположим , что произвольная комбинация + ,- из слагаемых :
1/2 ;1/3 ; 1/4 1/994 равна натуральному числу N.
Тогда умножим обе части равенства на 2^10.
Во всех дробях вида : 2^10/k сократяться со знаменателем все степени числа 2, что содержит число k. (То есть знаменатели всех дробей станут нечетными) . Если число k отлично от 2^10 , то числители этих дробей будут четны , тк все эти числа содержат в себе меньше чем 2^10.
Но если число k=2^10=1024 , то это единственное число которое после сокращения имеет нечетный числитель равный 1. Другими словами это будет просто число 1 (2^10/2^10)=1.
Всего от 2 до 1994 : 1993 числа , одно из которых равно единице , а остальные имеют четные числители и нечетные знаменатели.
Если перенести единицу в правую часть равенства , то получим cправа:
2^10*N +-1 - абсолютно очевидно , что число справа является нечетным. (+- в зависимости от того какой знак стоит перед ним)
А слева у нас остается 1992 числа с четными числителями и нечетными знаменателями. Если привести каждую из данных дробей к общему нечетному знаменателю ( тк общий знаменатель нечетных чисел число нечетное) , то получим дробь с нечетным знаменателем и числителем состоящим сумм и разностей четных чисел. ( Cумма или разность в любых комбинациях произвольного числа четных чисел число четное)
Таким образом получаем :
A/B= 2^10 *N+-1=C
A-четное число
B-нечетное число
2^10*N +-1=C -нечетное число
Но тогда :
A=B*C -то есть мы получили, что произведение двух нечетных чисел равна четному числу. Мы пришли к противоречию.
Нельзя расставить знаки «+». «-» между дробями 1/2,1/3,1/4...1/1994 так , чтобы в результате получилось натуральное число. Cоответственно число 4 не является исключением из правил и его так же получить невозможно.
(x+5)^3 > 8 .Можем извлечь из 3 степени ,т.к. степень нечетная и знак не поменяет ,тогда x+5 > 2 , x > -3
ответ : x∈ (-3;+∞)
2) (3x - 5 ) ^ 7 < 1. Можем извлечь из 7 степени ,т.к. степень нечетная и знак не поменяет ,тогда 3x- 5 < 1 ; 3x < 6 ; x<2
ответ : x∈ (-∞;2)
3) (4 - x)^4 > 81 . т.к. степень четная ,то при извлечении из 4 степени ,нужно добавить модуль ,т.е. |4-x| > 3 . Разобьем на две системы неравенств : .Решение первого неравенства (-∞;1) ,а второго (7;+∞) . Объединяя получаем ,что x∈(-∞;1) V (7;+∞)
ответ: x∈(-∞;1) V (7;+∞)
4х-длина
2(х+4х)=10х периметр
х*4х=4х кв. площадь
4х-0.2*4х=3.2х-длина новая
х+0.2х=1.2х-ширина новая
2(3.2х+1.2х)=8.8 периметр новый
3.2х*1.2х=3.84х кв. площадь новая
10х-100%
8.8х-у% у=8.8х*100%:10х=88% периметр уменьшиться на 100%-88%=12%
4х кв.-100%
3.84х кв.-у% у=3.84х кв.*100% :4х кв.= 96% площадь уменьш. на 100%-96%=на 4%