0. область определения (-∞; +∞), область значений та же. 1. ищем производную. f'(x) = -3x² + 3; 2. находим экстремумы. -3x² + 3; = 0; x= ± 1. 3. находим промежутки убывания ф-ции. f'(x) < 0 при x ∈ (-∞; -1)u(1; +∞). 4. промежутки возрастания: f'(x) > 0 при x ∈ (-1; 1). 5. в точке x=-1 локальный минимум, f(-1)=-4. в точке x=1 локальный максимум, f(1)=0. 6. f''(x) = 6x. функция выпуклая при х < 0, вогнутая при x > 0, точка перегиба при x=0. 7. f(0) = -2 - точка пересечения с осью ординат. 8. с точками пересечения с осью абсцисс сложнее, в средней школе не учат решать кубические уравнения. но нам повезло, потому что корень x=1 мы уже случайно нашли. поделив в столбик -x^3+3x-2 на х-1, получаем -x² - x + 2. решив квадратное уравнение -x² - x + 2 = 0, получим два корня -2 и 1. таким образом, у графика ф-ции есть две общие точки с осью абсцисс: -2 и 1.
А) 1/3 и 1/5 меньше половины, а 3/4 и 7/8 почти 1...значит 1/3 и 1/5 однозначно меньше, чем 3/4 и 7/8. Сравниваем 1/3 и 1/5 (числитель одинаковый, значит сравниваем знаменатели: чем больше знаменатель, тем меньше дробь) : 1/5<1/3. Теперь сравниваем 3/4 и 7/8 (3/4 - до единицы не хватает 1/4, 7/8 - до единицы не хватает 1/8. сравниваем то, чего не хватает, чем меньше остаток, тем больше исходная дробь: 1/4>1/8): 7/8>3/4 ответ: 7/8, 3/4, 1/3, 1/5
=3.6x+2.7-1.6+0.3=
=3.6x+1.4=
=-3.6+1.4=-2.2