Пошаговое объяснение:
Можно свести требуемое условие до фот такой формулы: 1" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%5E%7B2%7D%20%2By%5E%7B2%7D%20%3E%201" title="x^{2} +y^{2} > 1">, что при замене знака больше на равно даёт формулу окружности с центром в начале координат. А сама сумма квадратов даёт квадрат со стороной 2, ибо максимальная сумма 2, а минимальная - 0. Нужно найти отношение площади квадрата с вырезанным из него куском окружности к площади всего квадрата. Т.к. отрезок [0; 1], сторона r = 1, а площадь четверти круга следовательно . Площадь квадрата - 8. Вычитаем из площади квадрата полученную ранее и делим на площадь квадрата. Результат -
Точка (x;y) имеет координату x по оси x, и координату y по оси y.
Отметим вс точку R, чтобы провести MR║AB.
R(x₁;y₁), A(-3;1), B(0;-4), M(2;-1)
x₁ = 2-(0+3) = -1
y₁ = -1-(-4-1) = 4
R(-1;4)
Проведём прямую a по двум точкам (M и R).
Отметим вс точку T, чтобы провести MT⊥AB.
T(x₂;y₂), A(-3;1), B(0;-4), M(2;-1)
x₂ = 2+(-4-1) = -3
y₂ = -1-(0+3) = -4
T(-3;-4)
Проведём прямую b по двум точкам (M и T).
Чертёж смотри в приложении.