В Древнем Китае уже пользовались десятичной системой мер, обозначали
дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки,
тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3
доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались
дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи
принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2
чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0
паутинок.
Предшественниками десятичных дробей являлись шестидесятеричные дроби
древних вавилонян. Некоторые элементы десятичной дроби встречаются в трудах
многих ученых Европы в 12, 13, 14 веках.
Десятичную дробь с цифр и определенных знаков попытался
записать арабский математик ал-Уклисиди в X веке. Свои мысли по этому
поводу он выразил в "Книге разделов об индийской арифметике".
В XV веке, в Узбекистане, вблизи города Самарканда жил математик и
астроном Джемшид Гиясэддин ал-Каши (дата рождения неизвестна). Он наблюдал
за движением звезд, планет и Солнца, в этой работе ему необходимы были
десятичные дроби. Ал-Каши написал книгу "Ключ к арифметике" (была издана в
1424 году), в которой он показал запись дроби в одну строку числами в
десятичной системе и дал правила действия с ними. Ученый пользовался
несколькими написания дроби: то он применял вертикальную черту,
то чернила черного и красного цветов. Но этот труд до европейских ученых
своевременно не дошел.
Примерно в это же время математики Европы также пытались найти удобную
запись десятичной дроби. В книге "Математический канон" французского
математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 -
дробная часть и подчеркивалась и записывалась выше строки целой части
числа.
В 1585 г., независимо от ал-Каши, фламандский ученый Симон Стевин
(1548-1620) сделал важное открытие, о чем написал в своей книге "Десятая"
(на французском языке "De Thiende, La Disme"). Эта маленькая работа (всего
7 страниц) содержала объяснение записи и правил действий с десятичными
дробями. Он писал цифры дробного числа в одну строку с цифрами целого
числа, при этом нумеруя их. Например, число 12,761 записывалось так:
1 вариант
События совместные,поэтому используем формулу P(A+B) = P(A) + P(B) - P(A*B)
P(A) = 0,5*0,7*0,6=0,21 - вероятность,что абитуриент поступит на первую специальность
P(B) = 0,5*0,7*0,3=0,105 - вероятность,что абитуриент поступит на вторую специальность
P(A*B)=0,5*0,7*0,6*0,3=0,063
P(A+B)=0,21+0,105-0,063=0,252
2 вариант
Вероятность того,что абитуриент не сдаст физику: Р(А)= 1-0,6 =0,4
Вероятность того,что абитуриент не сдаст химию: Р(В)= 1-0,3 =0,7
Вероятность что не сдаст физику,или химию,или оба предмета: Р(С) = 0,4*0,7=0,28
Вероятность что сдаст физику,или химию,или оба предмета: Р(С1) = 1-0,28=0,72
Вероятность,что поступит на одну из специальностей: P(D) = 0,5*0,7*0,72=0,252
ответ: 0,252
4/10=28/70