Пошаговое объяснение:
Чтобы трехзначным из них было только одно, эти числа должны стоять на краю трехзначных границ, т.е. вблизи 100 и 1000
Пусть одно из чисел равно 100, тогда для выполнения условия, другое должно быть меньше 100, т.к. a - натуральное, то число 100 будет представляться в виде 10+a;
10+a=100; a=90,
а может пробегать значения от 90 до 99 (10 вариантов)
Рассмотрим теперь другую границу
одно из чисел равно 999, для выполнения условия оно должно представляться в виде a
a=999, тогда a+10=1009, следовательно a+10 может пробегать значения от 1009 до 1000 (10 вариантов)
10+10=20
m*n = -3*(-2)+0*2 = 6
|m| = sqrt ((-3)^2+0^2) = 3
|b| = sqrt ((-2)^2+2^2) = sqrt (8) = 2sqrt (2)
a = 45°.