М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
onkyyyyyyy
onkyyyyyyy
29.03.2023 22:18 •  Математика

Найти площадь фигуры, ограниченной параболой и осью ох. y=-x^2+6x-8

👇
Ответ:
TolstoyLev
TolstoyLev
29.03.2023

Находим крайние точки фигуры - пересечение параболы с осью Ох:

-х² + 6х - 8 = 0.

Квадратное уравнение, решаем относительно x:

Ищем дискриминант:

D=6^2-4*(-1)*(-8)=36-4*(-1)*(-8)=36-(-4)*(-8)=36-(-4*(-8))=36-(-(-4*8))=36-(-(-32))=36-32=4;

Дискриминант больше 0, уравнение имеет 2 корня:

x_1=(√4-6)/(2*(-1))=(2-6)/(2*(-1))=-4/(2*(-1))=-4/(-2)=-(-4/2)=-(-2)=2;

x_2=(√4-6)/(2*(-1))=(-2-6)/(2*(-1))=-8/(2*(-1))=-8/(-2)=-(-8/2)=-(-4)=4.

Тогда площадь фигуры равна интегралу:

S=\int\limits^4_2 {(-x^2+6x-8)} \, dx =\frac{-x^3}{3} +\frac{6x^2}{2} -8x|^4_2=\frac{4}{3}.

4,4(44 оценок)
Открыть все ответы
Ответ:
WepaDarkSouls
WepaDarkSouls
29.03.2023

Пусть за х часов второй пешеход пришел в пункт А. Расстояние до встречи пешеходов s1, после встречи s2. Тогда до встречи его скорость второго пешехода была \frac{s2}{40}, а после встречи \frac{s1}{40+x}. Скорость второго пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40+x}=\frac{s2}{40}, откуда \frac{s1}{s2}=\frac{40+x}{40}. У первого пешехода до встречи была скорость \frac{s1}{40}, а после встречи \frac{s2}{32}, скорость первого пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40}=\frac{s2}{32}, откуда \frac{s1}{s2}=\frac{40}{32}. По условию задачи составим уравнение\frac{40+x}{40}=\frac{40}{32}.

1280+32х=1600

32х=320

х=10

ответ: После встречи второй пешеход придет в пункт А через 10 часов

 

 

 

 

 

 

 

 

 

 

 

 

4,7(61 оценок)
Ответ:

Пусть за х часов второй пешеход пришел в пункт А. Расстояние до встречи пешеходов s1, после встречи s2. Тогда до встречи его скорость второго пешехода была \frac{s2}{40}, а после встречи \frac{s1}{40+x}. Скорость второго пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40+x}=\frac{s2}{40}, откуда \frac{s1}{s2}=\frac{40+x}{40}. У первого пешехода до встречи была скорость \frac{s1}{40}, а после встречи \frac{s2}{32}, скорость первого пешехода до встречи и после встречи была одинаковой, значит \frac{s1}{40}=\frac{s2}{32}, откуда \frac{s1}{s2}=\frac{40}{32}. По условию задачи составим уравнение\frac{40+x}{40}=\frac{40}{32}.

1280+32х=1600

32х=320

х=10

ответ: После встречи второй пешеход придет в пункт А через 10 часов

 

 

 

 

 

 

 

 

 

 

 

 

4,7(63 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ