Формула Бейеса.
Обозначим через H1;H2 - соответственно гипотезы о том, что наудачу выбранное лицо является мужчиной или женщиной.
1. Найдем вероятность гипотез H1;H2.
Вероятность гипотез будем находить по классическому определению вероятностей, где n = 2 - количество групп (полов), а m =1 - выбрали мужчину или женщину, тогда вероятности этих гипотез до проведения испытаний равны между собой
P(H1)=P(H2)=12
2. Найдем условные вероятности.
В результате испытания наблюдается событие A - выбрали дальтоника. Найдем условные вероятности этого события при гипотезах Hм;Hж
дальтоник среди мужчин
P(A|H1)=mn=5100=0.05
дальтоник среди женщин
P(A|H2)=mn=0,25100=0.0025
3. Применяем формулу Бейеса.
По формуле Бейеса
P(Hi|Ai)=P(Hi)P(A|Hi)∑ni=1P(Hi)P(A|Hi)
В нашем частном случае вероятности P(Hi) равны, поэтому они сокращаются и формула примет вид
P(Hi|Ai)=P(A|Hi)∑ni=1P(A|Hi)
подставляем данные и находим вероятность гипотезы H1 после испытания
P(Hм|A)=0,050,05+0,0025 ≈0,95
вес в (кг) схема
1) курица (х-8)-4 1) < 2) на 4 кг
2) заяц х-8 2) < 3) на 8 кг
3) собака х
1)8+4=12 кг курица легче собаки
ответ: на 12 кг курица легче собаки.