Найдем сначала общее решение соответствующего однородного дифференциального уравнения

Пусть
, мы получим характеристическое уравнение


— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию 
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение

Приравниваем коэффициенты при степени x
откуда 
откуда 
откуда 
Частное решение: 
Общее решение линейного неоднородного дифференциального уравнения:

Найдем сначала общее решение соответствующего однородного дифференциального уравнения

Пусть
, мы получим характеристическое уравнение


— общее решение однородного диф. ур.
Найдём теперь частное решение. Рассмотрим функцию 
отсюда
;
. Сравнивая
с корнями характеристического уравнения и, принимая во внимая, что
, частное решение будем искать в виде:

Подставляем в исходное дифференциальное уравнение

Приравниваем коэффициенты при степени x
откуда 
откуда 
откуда 
Частное решение: 
Общее решение линейного неоднородного дифференциального уравнения:

2.5*3=7.5
12.5:0.1=125
125*3=375
12.5:2.5=5
8.5:0.1=85
85*5=425
ответ: 125+425=550