x=4.6+7.54 x=12.14 x в левой части, а числа у правой части. Тоесть если в левой части есть числа без x, то переносим его в правую часть меняя знак
ответ: b = (-3,6,6), b (3; -6; -6), α = -60⁰
Пошаговое объяснение:
Дан вектор a(-1;2;2). Найдите координаты вектора b, коллинеарного вектору a, если a·b = 27.
Скалярное произведение векторов а и b определяется как произведение длин этих векторов на косинус угла между ними!
Поскольку векторы коллинеарные, то угол между ними равен 0 градусов, т. е косинус угла равен 1.
Длина вектора a равна
По условию задания скалярное произведение векторов равно 27
Зная длину вектора а найдем длину вектора b
Поскольку вектора а и b коллинеарны, то и координаты связаны уравнением
Подставим координаты вектора а
Запишем координаты вектора b через новую переменную k bx = -k, by =2k, bz = 2k
b = (-k,2k,2k)
Определим длину вектора и по теореме Пифагора
Так как длину вектора b мы знаем из скалярного произведения то
3|k| = 9
k₁ = 3 k₂=-3
Получили два варианта вектора b
Для k = 3
b = (-3,6,6)
Для k = -3
b (3; -6; -6)
Найдем угол между векторами a и c из формулы скалярного произведения, если a*c = -6; c = 4
α = arccos(-0,5) = -60⁰
ответ: b = (-3,6,6), b (3; -6; -6), α = -60⁰
Пошаговое объяснение:
Дан вектор a(-1;2;2). Найдите координаты вектора b, коллинеарного вектору a, если a·b = 27.
Скалярное произведение векторов а и b определяется как произведение длин этих векторов на косинус угла между ними!
Поскольку векторы коллинеарные, то угол между ними равен 0 градусов, т. е косинус угла равен 1.
Длина вектора a равна
По условию задания скалярное произведение векторов равно 27
Зная длину вектора а найдем длину вектора b
Поскольку вектора а и b коллинеарны, то и координаты связаны уравнением
Подставим координаты вектора а
Запишем координаты вектора b через новую переменную k bx = -k, by =2k, bz = 2k
b = (-k,2k,2k)
Определим длину вектора и по теореме Пифагора
Так как длину вектора b мы знаем из скалярного произведения то
3|k| = 9
k₁ = 3 k₂=-3
Получили два варианта вектора b
Для k = 3
b = (-3,6,6)
Для k = -3
b (3; -6; -6)
Найдем угол между векторами a и c из формулы скалярного произведения, если a*c = -6; c = 4
α = arccos(-0,5) = -60⁰
х = 4,6 + 7,54
х = 12,14
Проверка:
12,14 - 7,54 = 4,6
ответ: х = 12,14