Дана функция
1. Найти область определения функции и область значений функции, выявить точки разрыва, если они есть - это точка х = -1.
2. Выяснить, является ли функция четной или нечетной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
\frac{\left(x - 2\right)^{2}}{x + 1} = \frac{\left(- x - 2\right)^{2}}{- x + 1}
- Нет
\frac{\left(x - 2\right)^{2}}{x + 1} = - \frac{\left(- x - 2\right)^{2}}{- x + 1}
- Нет, значит, функция не является ни чётной, ни нечётной.
3. Выяснить, является ли функция периодической - нет.
4. Найти точки пересечения графика с осями координат (нули функции).
График функции пересекает ось X при f = 0
значит надо решить уравнение:
\frac{\left(x - 2\right)^{2}}{x + 1} = 0.
Решаем это уравнение.
Точки пересечения с осью X: x_{1} = 2.
5. Найти асимптоты графика.
Уравнения наклонных асимптот обычно ищут в виде y = kx + b.
Находим коэффициент k:
Находим коэффициент b:
Получаем уравнение наклонной асимптоты: y = x - 5.
Найдем вертикальные асимптоты. Для этого определим точки разрыва:
x1 = -1
Находим пределы в точке -1. Они равны +-∞.
Поэтому точка x1 = -1 является вертикальной асимптотой.
6. Вычислить производную функции f'(x) и определить критические точки.
Приравниваем нулю производную и получаем 2 корня х = 2 и х = -4 и четыре промежутка значений производной (с учётом разрыва функции в точке х = -1): (-∞; -4), (-4; -1), (-1; 2), (2; +∞).
Определяем знак производной на полученных промежутках:
х = -5 -4 -3 -1 0 2 3
y' = 0,4375 0 -1,25 - -8 0 0,4375.
7. Найти промежутки монотонности функции.
Где производная положительна - функция возрастает, где отрицательна - там убывает.
х ∈ (-∞; -4) ∪ (2; +∞) - функция возрастает,
х ∈ (-4; -1) ∪ (-1; 2) - функция убывает.
8. Определить экстремумы функции f(x).
Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
В точке х = -4 (знак с + на -) это максимум,
в точке х = 2 (знак с - на +) это минимум.
9. Вычислить вторую производную f''(x) = 18/(x+1)³.
10. Определить направление выпуклости графика и точки перегиба.
Так как вторая производная в области определения не может быть равной нулю, то функция не имеет перегибов.
Ну логика решения у меня была такая:
составим уравнение с двумя неизвестными:
(1/3)x+(1/4)x+7+y=x где x- количество всех солдатиков, а y- количество желтых
приведем подобные и получим:
(5/12)x-7=y
Очевидно, что y - это натуральное число (как и x) , тогда нам нужно подобрать такое минимальное натуральное x, чтобы y был натуральным
Дальше идёт простой подбор, в результате которого мы выясним, что минимальный натуральный x, при котором y будет натуральным числом равен 24. Подставим 24 вместо x и получим, что y=3
Иухатт нае хъомæ рбацыдаиккой уазджытае.æз æмæ мæ мад цæттæ кодтам алцыдæр се’рбацыдмае.Байтыдтам фынгыл сыгъдæг æмæ бæрæгбонон фынгæмбæрзæн.Рывæрдтам раессугъд мигæнæнтæ.Афтæ ма рывæрдтам тынг раессугъд нывджын салфеткæтæ.Стæй мæ мадимæ райдадтам аразын фæлындынтæ нæ фынгæн.Баераегбонон гуыл.Афтæ нæхъæн бон уыттаен мæ мадимæ.