a)15cosx=3cosx·(0,2)–sinx;
15cosx=(3·5)cosx=3cosx·5cosx;
(0,2)–sinx=(1/5)–sinx=(5–1)–sinx=5sinx;
уравнение принимает вид:
3cosx·5cosx=3cosx·5sinx;
3cosx > 0
5cosx=5sinx
cosx=sinx
tgx=1
x=(π/4)+πk, k∈z
б) чтобы найти корни, принадлежащие отрезку [–3π; –3π/2] рассмотрим неравенства.
–3π ≤ (π/4)+πk ≤ –3π/2, k∈z
–3 ≤ (1/4)+k ≤ –3/2, k∈z
–3 целых 1/4 ≤ k ≤ (1/4)–(3/2), k∈z
–3 целых 1/4 ≤ k ≤ (–5/4), k∈z
неравенству удовлетворяют k=–3 и k=–2
при k=–3
x=(π/4)–3π=–11π/4
при k=–2
x=(π/4)–2π=–7π/4
о т в е т. а)(π/4)+πk, k∈z; б) –11π/4; –7π/4.
Обозначим: собственная скорость теплохода — v км/ч, а скорость течения реки — x км/ч». Тогда
a) v + x (км/ч) - скорость теплохода по течению реки
v - x (км/ч) - скорость теплохода против течения
b) 3*(v+x) (км) - расстояние, которое теплоход проплыл за 3 часа по течению реки
c) 3,9*(v-x) (км) - расстояние, которое теплоход проплыл за 3,9 ч против течения реки
d) расстояние, пройденное теплоходом по течению реки, и расстояние, пройденное теплоходом против течения реки, будут равными, т. е.
3*(v+x)=3,9*(v-x)
Пошаговое объяснение:
Пройденное расстояние равно скорости, умноженной на время:
s = v × t.
В нашем случае расстояние не меняется. Разными являются скорость теплохода (при движении по течению реки она больше) и затраченное время (при движении по течению реки оно меньше).
16%=0,16 ;
1+0,16=1,16 часть. В 1,16 часть увеличится сумма первоначального вклада за 1 год.
(1,16)¹⁰ часть. В (1,16)¹⁰ часть увеличится сумма первоначального вклада за 10 лет.
2000*(1,16)¹⁰≈8822,87 гривен будет величина капитала через 10 лет.
ответ: ≈ 8822,87 гривен.