Доказательство.
Пусть α и β — данные плоскости, a1 и a2 — пересекающиеся прямые в плоскости α , а b1 и b2 — соответственно параллельные им прямые в плоскости β .
Допустим, что плоскости α и β не параллельны, то есть, они пересекаются по некоторой прямой c .
Прямая a1 параллельна прямой b1 , значит, она параллельна и самой плоскости β .
Прямая a2 параллельна прямой b2 , значит, она параллельна и самой плоскости β (признак параллельности прямой и плоскости).
Прямая c принадлежит плоскости α , значит, хотя бы одна из прямых — a1 или a2 — пересекает прямую c , то есть имеет с ней общую точку. Но прямая c также принадлежит и плоскости β , значит, пересекая прямую c , прямая a1 или a2 пересекает плоскость β , чего быть не может, так как прямые a1 и a2 параллельны плоскости β .
Из этого следует, что плоскости α и β не пересекаются, то есть, они параллельны.
Свойства параллельных плоскостей
Теорема 1. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны.
невозможно
Пошаговое объяснение:
Для удобства введем понятие "суммарное положение" монет на прямоугольном поле. Этим понятием обозначим сумму всех порядковых номеров клеток с монетами (если на клетке две монеты, считаем эту клетку дважды, а если три - то трижды).
То есть для некоего заданного положения монет на клетках А, В и С суммарное положение будет равно
S = A + B + C
В начале суммарное положение монет равно:
20 + 21 + 2021 = 2062
Если мы обязательно перемещаем 2 монеты, из положения А, В, С, то:
одну - перемещаем вправо, увеличивая номер её поля на 1,
другую - перемещаем влево, уменьшая ее номер поля на 1,
третью монету - не трогаем.
Значит, суммарное положение у нас будет:
(А+1) + (В-1) + С = A+B+C + 1 - 1 = A + B + C
т.е. суммарное положение не изменяется при любом перемещении монет согласно условиям!
А значит, суммарное положение монет равно:
20 + 21 + 2021 = 2062
Для любого момента и этапа игры.
Допустим, мы собрали все монеты на одном поле Х.
В этом случае суммарное положение останется тем же и будет выглядеть так:
Х + Х + Х = 2062
3Х = 2062
Т.е. нлмер поля будет:
Х = 2062÷3
Однако число 2062 на 3 не делится!
Следовательно, такого поля, где мы собрали бы все 3 монеты играя согласно условиям -
- НЕ СУЩЕСТВУЕТ!
Сделать так, чтобы все три монеты оказались в одной клетке - НЕВОЗМОЖНО
0,56:80=7:1000 2,2:4,4=6:12 9,63:0,321=4,5:0,15