На каждой клетке доски размером 9×9 сидит жук, По свистку каждый из жуков переползает в одну из соседних по диагонали клеток. При этом в некоторых клетках может оказаться больше одного жука, а некоторые клетки окажутся незанятыми.
Докажите, что при этом незанятых клеток будет не меньше 9.На клетчатой бумаге даны произвольные n клеток. Докажите, что из них можно выбрать не менее n/4 клеток, не имеющих общих точекПлоскость раскрашена в три цвета. Докажите, что найдутся две точки одного цвета, расстояние между которыми равно 1.В левый нижний угол шахматной доски 8×8 поставлено в форме квадрата 3×3 девять фишек. Фишка может прыгать на свободное поле через рядом стоящую фишку, то есть симметрично отражаться относительно её центра (прыгать можно по вертикали, горизонтали и диагонали). Можно ли за некоторое количество таких ходов поставить все фишки вновь в форме квадрата 3×3, но в другом углу:
а) левом верхнем,
б) правом верхнем?
Памойму правильно если не правильно зделайте отметить нарушения.
Рациональное число — это число, которое может быть представлено в виде дроби a разделить на b , где a — это числитель дроби, b — знаменатель дроби. Причем b не должно быть нулём, поскольку деление на ноль не допускается.
К рациональным числам относятся следующие категории чисел:
целые числа (например −2, −1, 0 1, 2 и т.д.)
обыкновенные дроби (например одна вторая, одна третья, три четвёртых и т.п.)
смешанные числа (например две целых одна вторая, одна целая две третьих, минус две целых одна третья и т.п.)
десятичные дроби (например 0,2 и т.п.)
бесконечные периодические дроби (например 0,(3) и т.п.)
Каждое число из этой категории может быть представлено в виде дроби a разделить на b .
Примеры:
Пример 1. Целое число 2 может быть представлено в виде дроби две первых . Значит число 2 относится не только к целым числам, но и к рациональным.
Пример 2. Смешанное число две целых одна вторая может быть представлено в виде дроби пять вторых. Данная дробь получается путём перевода смешанного числа в неправильную дробь
перевод двух целых одной второй в неправильную дробь
Значит смешанное число две целых одна вторая относится к рациональным числам.
Пример 3. Десятичная дробь 0,2 может быть представлена в виде дроби две десятых . Данная дробь получилась путём перевода десятичной дроби 0,2 в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему десятичных дробей.
Поскольку десятичная дробь 0,2 может быть представлена в виде дроби две десятых , значит она тоже относится к рациональным числам.
Пример 4. Бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых. Данная дробь получается путём перевода чистой периодической дроби в обыкновенную дробь. Если испытываете затруднения на этом моменте, повторите тему периодические дроби.
Поскольку бесконечная периодическая дробь 0, (3) может быть представлена в виде дроби три девятых , значит она тоже относится к рациональным числам.
В дальнейшем, все числа которые можно представить в виде дроби, мы всё чаще будем называть одним словосочетанием — рациональные числа.
Докажем, что из любого такого числа с суммой цифр 17 можно сделать число с суммой цифр 28. Пусть у числа были цифры a, b, c, d, e. Рассмотрим число с цифрами 9-a, 9-b, 9-c, 9-d, 9-e, сумма цифр этого числа будет равна 45 - 17 (=28). Если какая-то из цифр какого либо числа равна нулю и стоит перед ненулевыми цифрами, то её не пишем, но как цифру рассматриваем При этом эти два числа не будут равны. Значит, чисел с суммой цифр 28 не меньше, чем чисел с суммой цифр 17. В обратную сторону так же. Значит, чисел с суммой цифр 17 не меньше, чем чисел с суммой цифр 28. Значит, их одинаковое количество.
ответ: Количества равны.