ОДЗ x,y>0 возведем оба уравнения в квадрат (2√x-√y)²=3² (√x√y)²=2²
4x-4√x√y+y=9 √x√y=2 по условию задачи xy=4
4x-8+y=9 xy=4
4x+y=17 xy=4 тут можно методом подбора понять что x=4 а y=1
а если метод подбора неубедителен то надо из первого уравнения выразить y через х и подставить во второе уравнение получится квадратное уравнение y=17-4x x(17-4x)=4 17x-4x²=4, 4x²-17x+4=0 , x1-2=(17+-√289-64)/8=(17+-15)/8 x1=4, x2=1/4 y1=17-16=1 y2=17-1=16 1) первое решение x=4, y=1 2) второе решение не подходит так как не обращает в верное равенство первое уравнение, так иногда бывает при возведении в квадрат
№1. а) АВО и СDO равны (они накрест лежащие при параллельных прямых АВ и CD и секущей BD ), аналогично относительно углов BAO и DCO (накр. леж. при параллельных прямых AB и CD и секущей АС) . Таким образом, треугольники АОВ и СОD подобны (по двум углам) , а у подобных треугольников соответствующие стороны пропорциональны. Значит АО: ОС=ВО: OD б) итак, у подобных треугольников АОВ и СОD (а их подобие доказано под "а") соответствующие стороны пропорциональны. ТО есть ОD:ОВ=СD:АВ отсюда АВ= (ОВ*СD) / ОD = (9*25)/15 = 15 (см)
1) 9,3,1 2) 11,1 3)25,5,1 4) 36,6,1,4,9,18,3,2,12,