М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Алекс117829
Алекс117829
23.05.2020 20:43 •  Математика

1. разложить квадратный трехчлен на множители: 2х2 + 3х – 5. , плез

👇
Ответ:
vladzaorozhniy
vladzaorozhniy
23.05.2020

2х²+3х-5=2(у-1)(у+2,5)=(у-1)(2у+5)

2х²+3х-5=0

Д=9+40=49

у₁=-3+7/4=1

у₂=-3-7/4=-10/4=-2,5

4,6(100 оценок)
Открыть все ответы
Ответ:
Ilfar1234
Ilfar1234
23.05.2020

В) 11

Пошаговое объяснение:

Числа, которые делятся на 96 (от 1 до 500): 96 (96*1); 192 (96*2); 288 (96*3); 384 (96*4); 480 (96*5).

Если N+1 делится на 96, значит из чисел выше надо вычесть по 1 и среди них искать N: 95 (96-1); 191 (192-1); 287 (288-1); 383 (384-1); 479 (480-1).

Теперь ищем N-1, то есть из возможных чисел N вычитаем по 1: 94 (95-1); 190 (191-1); 286 (287-1); 382 (383-1); 478 (479-1).

Теперь N-1 делим на 19: 94:19= не целое число; 190:19=10 ...

Получаем, что наименьшее число N-1 нацело поделившееся на 19 - 190. Теперь ищем N: 190+1=191. N=191. Ищем сумму чисел: 1+9+1=11.

4,5(15 оценок)
Ответ:
Unicorn536
Unicorn536
23.05.2020

Сначала определим, как выглядят все делители заданного числа. Для этого стоит разложить его на простые множители:

\begin{gathered} 8^{n+2} \cdot 12^{n-3} = ( 2^{3} )^{n+2} \cdot (3\cdot4)^{n-3} = 2^{3n+6} \cdot 3^{n-3} \cdot 4^{n-3} = 2^{3n+6} \cdot 3^{n-3} \cdot \\ \cdot 2^{2n-6} = 2^{3n+6 + 2n-6} \cdot 3^{n-3} = 2^{5n} \cdot 3^{n-3} \end{gathered}

8

n+2

⋅12

n−3

=(2

3

)

n+2

⋅(3⋅4)

n−3

=2

3n+6

⋅3

n−3

⋅4

n−3

=2

3n+6

⋅3

n−3

⋅2

2n−6

=2

3n+6+2n−6

⋅3

n−3

=2

5n

⋅3

n−3

Из этого разложения заключаем, что все делители имеют вид: 2^{p} \cdot 3^{q}2

p

⋅3

q

, где 0 \leq p \leq 5n0≤p≤5n , 0 \leq q \leq n-30≤q≤n−3

По условию это число имеет 42 натуральных делителя.

1)Пусть сначала q = 0q=0 , то есть, каждый из 42 делителей есть степень двойки. Очевидно, что эти делители располагаются лишь в порядке возрастания степеней двойки "без пропусков"(иначе получится число, имеющее более 42 делителей), поэтому 0 \leq p \leq 410≤p≤41 (между 0 и 41 располагается ровно 42 натуральных числа). А чтобы всех таких делителей вида 2^{0 \leq p \leq 41}2

0≤p≤41

было ровно столько, необходимо, чтобы

5n = 415n=41

Если 5n \ \textless \ 415n \textless 41 ,то таких делителей меньше 42, если 5n \ \textgreater \ 415n \textgreater 41 , то больше.

Итак, 5n = 415n=41 , откуда n = \frac{41}{5}n=

5

41

- не натуральное число. Поэтому делаем вывод: среди делителей данного числа не могут содержаться только лишь степени двойки.

2)Повторим рассуждения для степеней тройки.

Пусть p = 0p=0 для всех делителей. Тогда они имеют вид 3^{q}3

q

В силу рассуждений предыдущего пункта,n - 3 = 41n−3=41 , откуда

n = 41 + 3 = 44n=41+3=44 - натуральное число. Этот случай вполне нас может устраивать, но здесь обязательна проверка - подстановка n в запись числа и прикидка количества делителей. Подставляя, имеем число:

2^{5 \cdot 44} \cdot 3^{44-3} = 2^{220} \cdot 3^{41}2

5⋅44

⋅3

44−3

=2

220

⋅3

41

Но мы видим, что число имеет 220 делителей, только лишь являющихся степенями двойки, не говоря про остальные делители(то есть, их не 42 явно). Поэтому n = 44n=44 условию задачи не удовлетворяет.

3)Пусть теперь имеем среди делителей и делители "смешанной" породы.

Как найти нам теперь n?

Пусть у нас есть какое-либо число вида 2^{5n} \cdot 3^{n-3}2

5n

⋅3

n−3

. Какова структура делителей данного числа? Их три вида:

а)Вида 2^{p}2

p

. Очевидно, что p_{max} = 5np

max

=5n , а потому всего их 5n+15n+1 ;

б)Вида 3^{q}3

q

. Ясно, что q_{max} = n-3q

max

=n−3 , а всего их n-3+1 = n-2

Плюс ко всему замечаем, что два раза получается в делителе 1. Так что один лишний делитель я выбрасываю.

О чём это всё говорит? О том, что "чистых" делителей в точности

5n+1 + n-2 - 1 = 6n - 25n+1+n−2−1=6n−2 (убираем 1 отсюда)

в)Смешанные делители вида 2^{p} \cdot 3^{q}2

p

⋅3

q

. Сколько их? Здесь уже практически чистая комбинаторика. Подсчитываем общее допустимое число делителей.

На каждую из \{0, 1, ..., 5n\}{0,1,...,5n} степеней числа 2(всего их 5n+15n+1 , но 0 не включается, а потому только 5n) можно поставить одну из \{0, 1, .., n-3\}{0,1,..,n−3} степеней числа 3(всего их n-3+1 = n-2n−3+1=n−2 , но 0 не включаем, а потому n-3). Соответственно, получаем 5n(n-3)5n(n−3) их комбинаций.

Всего делителей 42, так что

\begin{gathered}6n-2 + 5n(n-3) = 42 \\ 5 n^{2} -9n -44 = 0 \\ D = 9^{2} + 4 * 5 * 44 = 961 \\ n_{1} = \frac{9 - 31}{10} \end{gathered}

6n−2+5n(n−3)=42

5n

2

−9n−44=0

D=9

2

+4∗5∗44=961

n

1

=

10

9−31

- не натуральное и даже не целое число.

n_{2} = \frac{9 + 31}{10} = 4n

2

=

10

9+31

=4

Таким образом, n = 4n=4 . Произведём проверку:

2^{5\cdot4} \cdot 3^{4-3} = 2^{20} \cdot 3^{1} = 3\cdot 2^{20}2

5⋅4

⋅3

4−3

=2

20

⋅3

1

=3⋅2

20

- действительно, число имеет 42 натуральных делителя(40 - отличных от 1 и самого числа, и 2 особых делителя - само число и 1).

4,6(59 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ