4/10=2/5,8/12=2/3,6/9=2/3,9/12=3/4,2/8=1/4,6/30=2/10,15/60=3/4,88/33=8/3,2/100=1/50,,50/100=5/10
ответ: 1.
а) 0,872 × 6,3 = 5,4936
б) 1,6 × 7,625 = 12,2
в) 0,045 × 0,1 = 0,0045
г) 30,42 : 7,8 = 3,9
д) 0,702 : 0,065 = 10,8
е) 0,026 : 0,01 = 2,6
2.
(32,4 + 41 + 27,95 + 46,9 + 55,75) : 5 = 204 : 5 = 40,8
3.
296,2 – 2,7 × 6,6 + 6 : 0,15 = 296,2 - 17,82 + 40 = 318,38
4.
3 * 63,2 = 189,6 (км поезд за 3 часа
4 * 76,5 = 306 (км поезд за 4 часа
189,6 + 306 = 495,6 (км) - весь путь поезда
3 + 4 = 7 (ч) - был поезд в пути
495,6 : 7 = 70,8 (км/ч) - средняя скорость поезда
5.
2,9 * 6 = 17,4 - сумма 6 чисел
10,23+17,4 = 27,63 - сумму 9 чисел
27,63 : 9 = 3,07 - среднее арифметическое девяти чисел.
Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби. По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.
Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы общий делитель. Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби, полученная дробь равна исходной.
Для примера, проведем сокращение обыкновенной дроби 8/24, разделив ее числитель и знаменатель на 2. Иными словами, сократим дробь 8/24 на 2. Так как 8:2=4 и 24:2=12, то в результате такого сокращения получается дробь 4/12, которая равна исходной дроби 8/24 (смотрите равные и неравные дроби). В итоге имеем .
Пошаговое объяснение:
б) 1/4; 1/5;
в) 1/4; 2 целых 2/3; 1/50; 1/2