Пусть это будут abc. всевозможные трехзначные: abc acb bac bca cab cba в разряде единиц в сумме получится 2(a+b+c) - оканчивается на 6. т.е. 2(a+b+c)=16 или 2(a+b+c)=26 или 2(a+b+c)=36 или 2(a+b+c)=46. 56 уже не получится, т.к. (a+b+c) не может равняться 28. вариант 2(a+b+c)=6 или то же что и (a+b+c)=3 тоже не может быть. 2(a+b+c)=26 и 2(a+b+c)=36 отпадают по следующему условию. сумма всех чисел будет равняться 2886 и 3996 соответственно. значит 2(a+b+c)=46 - это наш вариант. Сумма шести чисел как раз равняется 5106. Таким образом a+b+c=23. наименьшая цифра НЕ может быть 1, 2, 3, 4 и 5 потому, что сумма двух остальных должна быть равна 22, 21, 20, 19 и 18 соответственно. А вот 17 уже может быть как 9+8. тогда недостающая цифра равна 23-17=6. Значит минимальная цифра - 6
По условию мы получаем четыре равнобедренных треугольника: АСF, СFЕ, FED, BDE. Углы при основании равнобедренного треугольника равны. Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине. Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как? Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А. И так до конца, т.е до выражения угла А3 через А. Далее составляется уравнение: 2А+А3(выраженное через А)=180. Если все правильно выразите, то должно получиться 9А=360, т.е. А=40. Успехов, дерзайте!
68^2-49*39=4624-1911=2713